# CLAUDE.md This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository. ## Project Overview `yottob` is a Flask-based web application for processing YouTube RSS feeds with SQLAlchemy ORM persistence and async video downloads. The project provides both a REST API and CLI interface for fetching and parsing YouTube channel feeds, with filtering logic to exclude YouTube Shorts. All fetched feeds are automatically saved to a SQLite database for historical tracking. Videos can be downloaded asynchronously as MP4 files using Celery workers and yt-dlp. ## Development Setup This project uses `uv` for dependency management. **Install dependencies:** ```bash uv sync ``` **Activate virtual environment:** ```bash source .venv/bin/activate # On macOS/Linux ``` **Initialize/update database:** ```bash # Run migrations to create or update database schema source .venv/bin/activate && alembic upgrade head ``` **Start Redis (required for Celery):** ```bash # macOS with Homebrew brew services start redis # Linux sudo systemctl start redis # Docker docker run -d -p 6379:6379 redis:alpine # Verify Redis is running redis-cli ping # Should return "PONG" ``` **Start Celery worker (required for video downloads):** ```bash source .venv/bin/activate && celery -A celery_app worker --loglevel=info ``` ## Running the Application **Run the CLI feed parser:** ```bash python main.py ``` This executes the `main()` function which fetches and parses a YouTube channel RSS feed for testing. **Run the Flask web application:** ```bash flask --app main run ``` The web server exposes: - `/` - Main page (renders `index.html`) - `/api/feed` - API endpoint for fetching feeds and saving to database - `/api/channels` - List all tracked channels - `/api/history/` - Get video history for a specific channel - `/api/download/` - Trigger video download (POST) - `/api/download/status/` - Check download status (GET) - `/api/download/batch` - Batch download multiple videos (POST) **API Usage Examples:** ```bash # Fetch default channel feed (automatically saves to DB) curl http://localhost:5000/api/feed # Fetch specific channel with options curl "http://localhost:5000/api/feed?channel_id=CHANNEL_ID&filter_shorts=false&save=true" # List all tracked channels curl http://localhost:5000/api/channels # Get video history for a channel (limit 20 videos) curl "http://localhost:5000/api/history/CHANNEL_ID?limit=20" # Trigger download for a specific video curl -X POST http://localhost:5000/api/download/123 # Check download status curl http://localhost:5000/api/download/status/123 # Batch download all pending videos for a channel curl -X POST "http://localhost:5000/api/download/batch?channel_id=CHANNEL_ID&status=pending" # Batch download specific video IDs curl -X POST http://localhost:5000/api/download/batch \ -H "Content-Type: application/json" \ -d '{"video_ids": [1, 2, 3, 4, 5]}' ``` ## Architecture The codebase follows a clean layered architecture with separation of concerns: ### Database Layer **`models.py`** - SQLAlchemy ORM models - `Base`: Declarative base for all models - `DownloadStatus`: Enum for download states (pending, downloading, completed, failed) - `Channel`: Stores YouTube channel metadata (channel_id, title, link, last_fetched) - `VideoEntry`: Stores individual video entries with foreign key to Channel, plus download tracking fields: - `download_status`, `download_path`, `download_started_at`, `download_completed_at`, `download_error`, `file_size` - Relationships: One Channel has many VideoEntry records **`database.py`** - Database configuration and session management - `DATABASE_URL`: SQLite database location (yottob.db) - `engine`: SQLAlchemy engine instance - `init_db()`: Creates all tables - `get_db_session()`: Context manager for database sessions ### Async Task Queue Layer **`celery_app.py`** - Celery configuration - Celery instance configured with Redis broker - Task serialization and worker configuration - 1-hour task timeout with automatic retries **`download_service.py`** - Video download tasks - `download_video(video_id)`: Celery task to download a single video as MP4 - Uses yt-dlp with MP4 format preference - Updates database with download progress and status - Automatic retry on failure (max 3 attempts) - `download_videos_batch(video_ids)`: Queue multiple downloads - Downloads saved to `downloads/` directory ### Core Logic Layer **`feed_parser.py`** - Reusable YouTube feed parsing module - `YouTubeFeedParser`: Main parser class that encapsulates channel-specific logic - `FeedEntry`: In-memory data model for feed entries - `fetch_feed()`: Fetches and parses RSS feeds - `save_to_db()`: Persists feed data to database with upsert logic - Independent of Flask - can be imported and used in any Python context ### Web Server Layer **`main.py`** - Flask application and routes - `app`: Flask application instance (main.py:10) - Database initialization on startup (main.py:16) - `index()`: Homepage route handler (main.py:21) - `get_feed()`: REST API endpoint (main.py:27) that fetches and saves to DB - `get_channels()`: Lists all tracked channels (main.py:60) - `get_history()`: Returns video history for a channel (main.py:87) - `trigger_download()`: Queue video download task (main.py:134) - `get_download_status()`: Check download status (main.py:163) - `trigger_batch_download()`: Queue multiple downloads (main.py:193) - `main()`: CLI entry point for testing (main.py:251) ### Templates **`templates/index.html`** - Frontend HTML (currently static placeholder) ## Feed Parsing Implementation The `YouTubeFeedParser` class in `feed_parser.py`: - Constructs YouTube RSS feed URLs from channel IDs - Uses feedparser to fetch and parse feeds - Validates HTTP 200 status before processing - Optionally filters out YouTube Shorts (any entry with "shorts" in URL) - Returns structured dictionary with feed metadata and entries **YouTube RSS Feed URL Format:** ``` https://www.youtube.com/feeds/videos.xml?channel_id={CHANNEL_ID} ``` ## Database Migrations This project uses Alembic for database schema migrations. **Create a new migration after model changes:** ```bash source .venv/bin/activate && alembic revision --autogenerate -m "Description of changes" ``` **Apply migrations:** ```bash source .venv/bin/activate && alembic upgrade head ``` **View migration history:** ```bash source .venv/bin/activate && alembic history ``` **Rollback to previous version:** ```bash source .venv/bin/activate && alembic downgrade -1 ``` **Migration files location:** `alembic/versions/` **Important notes:** - Always review auto-generated migrations before applying - The database is automatically initialized on Flask app startup via `init_db()` - Migration configuration is in `alembic.ini` and `alembic/env.py` - Models are imported in `alembic/env.py` for autogenerate support ## Database Schema **channels table:** - `id`: Primary key - `channel_id`: YouTube channel ID (unique, indexed) - `title`: Channel title - `link`: Channel URL - `last_fetched`: Timestamp of last feed fetch **video_entries table:** - `id`: Primary key - `channel_id`: Foreign key to channels.id - `title`: Video title - `link`: Video URL (unique) - `created_at`: Timestamp when video was first recorded - `download_status`: Enum (pending, downloading, completed, failed) - `download_path`: Local file path to downloaded MP4 - `download_started_at`: When download began - `download_completed_at`: When download finished - `download_error`: Error message if download failed - `file_size`: Size in bytes of downloaded file - Index: `idx_channel_created` on (channel_id, created_at) for fast queries - Index: `idx_download_status` on download_status for filtering ## Video Download System The application uses Celery with Redis for asynchronous video downloads: **Download Workflow:** 1. User triggers download via `/api/download/` (POST) 2. VideoEntry status changes to "downloading" 3. Celery worker picks up task and uses yt-dlp to download as MP4 4. Progress updates written to database 5. On completion, status changes to "completed" with file path 6. On failure, status changes to "failed" with error message (auto-retry 3x) **yt-dlp Configuration:** - Format: `bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best` - Output format: MP4 (converted if necessary using FFmpeg) - Output location: `downloads/_.mp4` - Progress hooks for real-time status updates **Requirements:** - Redis server must be running (localhost:6379) - Celery worker must be running to process downloads - FFmpeg recommended for format conversion (yt-dlp will use it if available) ## Dependencies - **Flask 3.1.2+**: Web framework - **feedparser 6.0.12+**: RSS/Atom feed parsing - **SQLAlchemy 2.0.0+**: ORM for database operations - **Alembic 1.13.0+**: Database migration tool - **Celery 5.3.0+**: Distributed task queue for async jobs - **Redis 5.0.0+**: Message broker for Celery - **yt-dlp 2024.0.0+**: YouTube video downloader - **Python 3.14+**: Required runtime version