195 lines
5.3 KiB
Python
195 lines
5.3 KiB
Python
import json
|
|
import os
|
|
from typing import Literal
|
|
import datetime
|
|
from ollama import Client
|
|
|
|
from openai import OpenAI
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
# Configure ollama client with URL from environment or default to localhost
|
|
ollama_client = Client(
|
|
host=os.getenv("OLLAMA_URL", "http://localhost:11434"), timeout=10.0
|
|
)
|
|
|
|
# This uses inferred filters — which means using LLM to create the metadata filters
|
|
|
|
|
|
class FilterOperation(BaseModel):
|
|
op: Literal["$gt", "$gte", "$eq", "$ne", "$lt", "$lte", "$in", "$nin"]
|
|
value: str | list[str]
|
|
|
|
|
|
class FilterQuery(BaseModel):
|
|
field_name: Literal["created_date, tags"]
|
|
op: FilterOperation
|
|
|
|
|
|
class AndQuery(BaseModel):
|
|
op: Literal["$and", "$or"]
|
|
subqueries: list[FilterQuery]
|
|
|
|
|
|
class GeneratedQuery(BaseModel):
|
|
fields: list[str]
|
|
extracted_metadata_fields: str
|
|
|
|
|
|
class Time(BaseModel):
|
|
time: int
|
|
|
|
|
|
DOCTYPE_OPTIONS = [
|
|
"Bill",
|
|
"Image Description",
|
|
"Insurance",
|
|
"Medical Record",
|
|
"Documentation",
|
|
"Letter",
|
|
]
|
|
|
|
|
|
class DocumentType(BaseModel):
|
|
type: list[str] = Field(description="type of document", enum=DOCTYPE_OPTIONS)
|
|
|
|
|
|
PROMPT = """
|
|
You are an information specialist that processes user queries. The current year is 2025. The user queries are all about
|
|
a cat, Simba, and its records. The types of records are listed below. Using the query, extract the
|
|
the date range the user is trying to query. You should return it as a JSON. The date tag is created_date. Return the date in epoch time.
|
|
|
|
If the created_date cannot be ascertained, set it to epoch time start.
|
|
|
|
You have several operators at your disposal:
|
|
- $gt: greater than
|
|
- $gte: greater than or equal
|
|
- $eq: equal
|
|
- $ne: not equal
|
|
- $lt: less than
|
|
- $lte: less than or equal to
|
|
- $in: in
|
|
- $nin: not in
|
|
|
|
Logical operators:
|
|
- $and, $or
|
|
|
|
### Example 1
|
|
Query: "Who is Simba's current vet?"
|
|
Metadata fields: "{"created_date"}"
|
|
Extracted metadata fields: {"created_date: {"$gt": "2025-01-01"}}
|
|
|
|
### Example 2
|
|
Query: "How many teeth has Simba had removed?"
|
|
Metadata fields: {}
|
|
Extracted metadata fields: {}
|
|
|
|
### Example 3
|
|
Query: "How many times has Simba been to the vet this year?"
|
|
Metadata fields: {"created_date"}
|
|
Extracted metadata fields: {"created_date": {"gt": "2025-01-01"}}
|
|
|
|
document_types:
|
|
- aftercare
|
|
- bill
|
|
- insurance claim
|
|
- medical records
|
|
|
|
Only return the extracted metadata fields. Make sure the extracted metadata fields are valid JSON
|
|
"""
|
|
|
|
|
|
DOCTYPE_PROMPT = f"""You are an information specialist that processes user queries. A query can have two tags attached from the following options. Based on the query, determine which of the following options is most appropriate: {",".join(DOCTYPE_OPTIONS)}
|
|
|
|
### Example 1
|
|
Query: "Who is Simba's current vet?"
|
|
Tags: ["Bill", "Medical Record"]
|
|
|
|
|
|
### Example 2
|
|
Query: "Who does Simba know?"
|
|
Tags: ["Letter", "Documentation"]
|
|
"""
|
|
|
|
|
|
class QueryGenerator:
|
|
def __init__(self) -> None:
|
|
pass
|
|
|
|
def date_to_epoch(self, date_str: str) -> float:
|
|
split_date = date_str.split("-")
|
|
date = datetime.datetime(
|
|
int(split_date[0]),
|
|
int(split_date[1]),
|
|
int(split_date[2]),
|
|
0,
|
|
0,
|
|
0,
|
|
)
|
|
|
|
return date.timestamp()
|
|
|
|
def get_doctype_query(self, input: str):
|
|
client = OpenAI()
|
|
response = client.chat.completions.create(
|
|
messages=[
|
|
{
|
|
"role": "system",
|
|
"content": "You are an information specialist that is really good at deciding what tags a query should have",
|
|
},
|
|
{"role": "user", "content": DOCTYPE_PROMPT + " " + input},
|
|
],
|
|
model="gpt-4o",
|
|
response_format={
|
|
"type": "json_schema",
|
|
"json_schema": {
|
|
"name": "document_type",
|
|
"schema": DocumentType.model_json_schema(),
|
|
},
|
|
},
|
|
)
|
|
|
|
response_json_str = response.choices[0].message.content
|
|
type_data = json.loads(response_json_str)
|
|
metadata_query = {"document_type": {"$in": type_data["type"]}}
|
|
return metadata_query
|
|
|
|
def get_query(self, input: str):
|
|
client = OpenAI()
|
|
response = client.responses.parse(
|
|
model="gpt-4o",
|
|
input=[
|
|
{"role": "system", "content": PROMPT},
|
|
{"role": "user", "content": input},
|
|
],
|
|
text_format=GeneratedQuery,
|
|
)
|
|
print(response.output)
|
|
query = json.loads(response.output_parsed.extracted_metadata_fields)
|
|
# response: ChatResponse = ollama_client.chat(
|
|
# model="gemma3n:e4b",
|
|
# messages=[
|
|
# {"role": "system", "content": PROMPT},
|
|
# {"role": "user", "content": input},
|
|
# ],
|
|
# format=GeneratedQuery.model_json_schema(),
|
|
# )
|
|
|
|
# query = json.loads(
|
|
# json.loads(response["message"]["content"])["extracted_metadata_fields"]
|
|
# )
|
|
# date_key = list(query["created_date"].keys())[0]
|
|
# query["created_date"][date_key] = self.date_to_epoch(
|
|
# query["created_date"][date_key]
|
|
# )
|
|
|
|
# if "$" not in date_key:
|
|
# query["created_date"]["$" + date_key] = query["created_date"][date_key]
|
|
|
|
return query
|
|
|
|
|
|
if __name__ == "__main__":
|
|
qg = QueryGenerator()
|
|
print(qg.get_doctype_query("How heavy is Simba?"))
|