Files
simbarag/main.py
2025-10-05 20:31:46 -04:00

215 lines
6.3 KiB
Python

import datetime
import logging
import os
from typing import Any, Union
import argparse
import chromadb
import ollama
from openai import OpenAI
from request import PaperlessNGXService
from chunker import Chunker
from query import QueryGenerator
from cleaner import pdf_to_image, summarize_pdf_image
from dotenv import load_dotenv
load_dotenv()
USE_OPENAI = os.getenv("OPENAI_API_KEY") != None
# Configure ollama client with URL from environment or default to localhost
ollama_client = ollama.Client(host=os.getenv("OLLAMA_URL", "http://localhost:11434"))
client = chromadb.PersistentClient(path=os.getenv("CHROMADB_PATH", ""))
simba_docs = client.get_or_create_collection(name="simba_docs2")
feline_vet_lookup = client.get_or_create_collection(name="feline_vet_lookup")
parser = argparse.ArgumentParser(
description="An LLM tool to query information about Simba <3"
)
parser.add_argument("query", type=str, help="questions about simba's health")
parser.add_argument(
"--reindex", action="store_true", help="re-index the simba documents"
)
parser.add_argument("--index", help="index a file")
ppngx = PaperlessNGXService()
openai_client = OpenAI()
def index_using_pdf_llm():
files = ppngx.get_data()
for file in files:
document_id = file["id"]
pdf_path = ppngx.download_pdf_from_id(id=document_id)
image_paths = pdf_to_image(filepath=pdf_path)
print(f"summarizing {file}")
generated_summary = summarize_pdf_image(filepaths=image_paths)
file["content"] = generated_summary
chunk_data(files, simba_docs)
def date_to_epoch(date_str: str) -> float:
split_date = date_str.split("-")
date = datetime.datetime(
int(split_date[0]),
int(split_date[1]),
int(split_date[2]),
0,
0,
0,
)
return date.timestamp()
def chunk_data(docs: list[dict[str, Union[str, Any]]], collection):
# Step 2: Create chunks
chunker = Chunker(collection)
print(f"chunking {len(docs)} documents")
texts: list[str] = [doc["content"] for doc in docs]
for index, text in enumerate(texts):
metadata = {
"created_date": date_to_epoch(docs[index]["created_date"]),
"filename": docs[index]["original_file_name"],
}
chunker.chunk_document(
document=text,
metadata=metadata,
)
def chunk_text(texts: list[str], collection):
chunker = Chunker(collection)
for index, text in enumerate(texts):
metadata = {}
chunker.chunk_document(
document=text,
metadata=metadata,
)
def consult_oracle(input: str, collection):
print(input)
import time
chunker = Chunker(collection)
start_time = time.time()
# Ask
# print("Starting query generation")
# qg_start = time.time()
# qg = QueryGenerator()
# metadata_filter = qg.get_query(input)
# qg_end = time.time()
# print(f"Query generation took {qg_end - qg_start:.2f} seconds")
# print(metadata_filter)
print("Starting embedding generation")
embedding_start = time.time()
embeddings = chunker.embedding_fx(inputs=[input])
embedding_end = time.time()
print(f"Embedding generation took {embedding_end - embedding_start:.2f} seconds")
print("Starting collection query")
query_start = time.time()
results = collection.query(
query_texts=[input],
query_embeddings=embeddings,
# where=metadata_filter,
)
query_end = time.time()
print(f"Collection query took {query_end - query_start:.2f} seconds")
# Generate
print("Starting LLM generation")
llm_start = time.time()
if USE_OPENAI:
response = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": "You are a helpful assistant that understands veterinary terms.",
},
{
"role": "user",
"content": f"Using the following data, help answer the user's query by providing as many details as possible. Using this data: {results}. Respond to this prompt: {input}",
},
],
)
output= response.choices[0].message.content
else:
response = ollama_client.generate(
model="gemma3:4b",
prompt=f"You are a helpful assistant that understandings veterinary terms. Using the following data, help answer the user's query by providing as many details as possible. Using this data: {results}. Respond to this prompt: {input}",
)
output = response["response"]
llm_end = time.time()
print(f"LLM generation took {llm_end - llm_start:.2f} seconds")
total_time = time.time() - start_time
print(f"Total consult_oracle execution took {total_time:.2f} seconds")
return output
def paperless_workflow(input):
# Step 1: Get the text
ppngx = PaperlessNGXService()
docs = ppngx.get_data()
chunk_data(docs, collection=simba_docs)
consult_oracle(input, simba_docs)
def consult_simba_oracle(input: str):
return consult_oracle(
input=input,
collection=simba_docs,
)
if __name__ == "__main__":
args = parser.parse_args()
if args.reindex:
print("Fetching documents from Paperless-NGX")
ppngx = PaperlessNGXService()
docs = ppngx.get_data()
print(f"Fetched {len(docs)} documents")
#
print("Chunking documents now ...")
chunk_data(docs, collection=simba_docs)
print("Done chunking documents")
# index_using_pdf_llm()
if args.index:
with open(args.index) as file:
extension = args.index.split(".")[-1]
if extension == "pdf":
pdf_path = ppngx.download_pdf_from_id(id=document_id)
image_paths = pdf_to_image(filepath=pdf_path)
print(f"summarizing {file}")
generated_summary = summarize_pdf_image(filepaths=image_paths)
elif extension in [".md", ".txt"]:
chunk_text(texts=[file.readall()], collection=simba_docs)
if args.query:
print("Consulting oracle ...")
print(
consult_oracle(
input=args.query,
collection=simba_docs,
)
)
else:
print("please provide a query")