Files
simbarag/blueprints/conversation/logic.py
2026-01-31 17:13:27 -05:00

81 lines
2.3 KiB
Python

import tortoise.exceptions
from langchain_openai import ChatOpenAI
import blueprints.users.models
from .models import Conversation, ConversationMessage, RenameConversationOutputSchema
async def create_conversation(name: str = "") -> Conversation:
conversation = await Conversation.create(name=name)
return conversation
async def add_message_to_conversation(
conversation: Conversation,
message: str,
speaker: str,
user: blueprints.users.models.User,
) -> ConversationMessage:
print(conversation, message, speaker)
message = await ConversationMessage.create(
text=message,
speaker=speaker,
conversation=conversation,
)
return message
async def get_the_only_conversation() -> Conversation:
try:
conversation = await Conversation.all().first()
if conversation is None:
conversation = await Conversation.create(name="simba_chat")
except Exception as _e:
conversation = await Conversation.create(name="simba_chat")
return conversation
async def get_conversation_for_user(user: blueprints.users.models.User) -> Conversation:
try:
return await Conversation.get(user=user)
except tortoise.exceptions.DoesNotExist:
await Conversation.get_or_create(name=f"{user.username}'s chat", user=user)
return await Conversation.get(user=user)
async def get_conversation_by_id(id: str) -> Conversation:
return await Conversation.get(id=id)
async def get_conversation_transcript(
user: blueprints.users.models.User, conversation: Conversation
) -> str:
messages = []
for message in conversation.messages:
messages.append(f"{message.speaker} at {message.created_at}: {message.text}")
return "\n".join(messages)
async def rename_conversation(
user: blueprints.users.models.User,
conversation: Conversation,
) -> str:
messages: str = await get_conversation_transcript(
user=user, conversation=conversation
)
llm = ChatOpenAI(model="gpt-4o-mini")
structured_llm = llm.with_structured_output(RenameConversationOutputSchema)
prompt = f"Summarize the following conversation into a sassy one-liner title:\n\n{messages}"
response = structured_llm.invoke(prompt)
new_name: str = response.get("title", "")
conversation.name = new_name
await conversation.save()
return new_name