Files
simbarag/blueprints/conversation/agents.py
Ryan Chen 32020a6c60 Replace Ollama with llama-server (OpenAI-compatible API)
- Update llm.py to use OpenAI client with custom base_url for llama-server
- Update agents.py to use ChatOpenAI instead of ChatOllama
- Remove unused ollama imports from main.py, chunker.py, query.py
- Add LLAMA_SERVER_URL and LLAMA_MODEL_NAME env vars
- Remove ollama and langchain-ollama dependencies

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-31 21:39:23 -05:00

89 lines
2.8 KiB
Python

import os
from typing import cast
from langchain.agents import create_agent
from langchain.chat_models import BaseChatModel
from langchain.tools import tool
from langchain_openai import ChatOpenAI
from tavily import AsyncTavilyClient
from blueprints.rag.logic import query_vector_store
# Configure LLM with llama-server or OpenAI fallback
llama_url = os.getenv("LLAMA_SERVER_URL")
if llama_url:
llama_chat = ChatOpenAI(
base_url=llama_url,
api_key="not-needed",
model=os.getenv("LLAMA_MODEL_NAME", "llama-3.1-8b-instruct"),
)
else:
llama_chat = None
openai_fallback = ChatOpenAI(model="gpt-5-mini")
model_with_fallback = cast(
BaseChatModel,
llama_chat.with_fallbacks([openai_fallback]) if llama_chat else openai_fallback,
)
client = AsyncTavilyClient(os.getenv("TAVILY_KEY"), "")
@tool
async def web_search(query: str) -> str:
"""Search the web for current information using Tavily.
Use this tool when you need to:
- Find current information not in the knowledge base
- Look up recent events, news, or updates
- Verify facts or get additional context
- Search for information outside of Simba's documents
Args:
query: The search query to look up on the web
Returns:
Search results from the web with titles, content, and source URLs
"""
response = await client.search(query=query, search_depth="basic")
results = response.get("results", [])
if not results:
return "No results found for the query."
formatted = "\n\n".join(
[
f"**{result['title']}**\n{result['content']}\nSource: {result['url']}"
for result in results[:5]
]
)
return formatted
@tool(response_format="content_and_artifact")
async def simba_search(query: str):
"""Search through Simba's medical records, veterinary documents, and personal information.
Use this tool whenever the user asks questions about:
- Simba's health history, medical records, or veterinary visits
- Medications, treatments, or diagnoses
- Weight, diet, or physical characteristics over time
- Veterinary recommendations or advice
- Ryan's (the owner's) information related to Simba
- Any factual information that would be found in documents
Args:
query: The user's question or information need about Simba
Returns:
Relevant information from Simba's documents
"""
print(f"[SIMBA SEARCH] Tool called with query: {query}")
serialized, docs = await query_vector_store(query=query)
print(f"[SIMBA SEARCH] Found {len(docs)} documents")
print(f"[SIMBA SEARCH] Serialized result length: {len(serialized)}")
print(f"[SIMBA SEARCH] First 200 chars: {serialized[:200]}")
return serialized, docs
main_agent = create_agent(model=model_with_fallback, tools=[simba_search, web_search])