import datetime from quart import Blueprint, jsonify, request from quart_jwt_extended import ( get_jwt_identity, jwt_refresh_token_required, ) import blueprints.users.models from .agents import main_agent from .logic import ( add_message_to_conversation, get_conversation_by_id, rename_conversation, ) from .models import ( Conversation, PydConversation, PydListConversation, ) conversation_blueprint = Blueprint( "conversation_api", __name__, url_prefix="/api/conversation" ) @conversation_blueprint.post("/query") @jwt_refresh_token_required async def query(): current_user_uuid = get_jwt_identity() user = await blueprints.users.models.User.get(id=current_user_uuid) data = await request.get_json() query = data.get("query") conversation_id = data.get("conversation_id") conversation = await get_conversation_by_id(conversation_id) await conversation.fetch_related("messages") await add_message_to_conversation( conversation=conversation, message=query, speaker="user", user=user, ) # Build conversation history from recent messages (last 10 for context) recent_messages = ( conversation.messages[-10:] if len(conversation.messages) > 10 else conversation.messages ) messages_payload = [ { "role": "system", "content": "You are a helpful cat assistant named Simba that understands veterinary terms. When there are questions to you specifically, they are referring to Simba the cat. Answer the user in as if you were a cat named Simba. Don't act too catlike. Be assertive.\n\nIMPORTANT: When users ask factual questions about Simba's health, medical history, veterinary visits, medications, weight, or any information that would be in documents, you MUST use the simba_search tool to retrieve accurate information before answering. Do not rely on general knowledge - always search the documents for factual questions.", } ] # Add recent conversation history for msg in recent_messages[:-1]: # Exclude the message we just added role = "user" if msg.speaker == "user" else "assistant" messages_payload.append({"role": role, "content": msg.text}) # Add current query messages_payload.append({"role": "user", "content": query}) payload = {"messages": messages_payload} response = await main_agent.ainvoke(payload) message = response.get("messages", [])[-1].content await add_message_to_conversation( conversation=conversation, message=message, speaker="simba", user=user, ) return jsonify({"response": message}) @conversation_blueprint.route("/") @jwt_refresh_token_required async def get_conversation(conversation_id: str): conversation = await Conversation.get(id=conversation_id) current_user_uuid = get_jwt_identity() user = await blueprints.users.models.User.get(id=current_user_uuid) await conversation.fetch_related("messages") # Manually serialize the conversation with messages messages = [] for msg in conversation.messages: messages.append( { "id": str(msg.id), "text": msg.text, "speaker": msg.speaker.value, "created_at": msg.created_at.isoformat(), } ) name = conversation.name if len(messages) > 8 and "datetime" in name.lower(): name = await rename_conversation( user=user, conversation=conversation, ) print(name) return jsonify( { "id": str(conversation.id), "name": name, "messages": messages, "created_at": conversation.created_at.isoformat(), "updated_at": conversation.updated_at.isoformat(), } ) @conversation_blueprint.post("/") @jwt_refresh_token_required async def create_conversation(): user_uuid = get_jwt_identity() user = await blueprints.users.models.User.get(id=user_uuid) conversation = await Conversation.create( name=f"{user.username} {datetime.datetime.now().timestamp}", user=user, ) serialized_conversation = await PydConversation.from_tortoise_orm(conversation) return jsonify(serialized_conversation.model_dump()) @conversation_blueprint.get("/") @jwt_refresh_token_required async def get_all_conversations(): user_uuid = get_jwt_identity() user = await blueprints.users.models.User.get(id=user_uuid) conversations = Conversation.filter(user=user) serialized_conversations = await PydListConversation.from_queryset(conversations) return jsonify(serialized_conversations.model_dump())