import datetime import logging import os from typing import Any, Union import argparse import chromadb import ollama from request import PaperlessNGXService from chunker import Chunker from query import QueryGenerator from cleaner import pdf_to_image, summarize_pdf_image from dotenv import load_dotenv load_dotenv() client = chromadb.PersistentClient(path=os.getenv("CHROMADB_PATH", "")) simba_docs = client.get_or_create_collection(name="simba_docs") feline_vet_lookup = client.get_or_create_collection(name="feline_vet_lookup") parser = argparse.ArgumentParser( description="An LLM tool to query information about Simba <3" ) parser.add_argument("query", type=str, help="questions about simba's health") parser.add_argument( "--reindex", action="store_true", help="re-index the simba documents" ) ppngx = PaperlessNGXService() def index_using_pdf_llm(): files = ppngx.get_data() for file in files: document_id = file["id"] pdf_path = ppngx.download_pdf_from_id(id=document_id) image_paths = pdf_to_image(filepath=pdf_path) generated_summary = summarize_pdf_image(filepaths=image_paths) file["content"] = generated_summary chunk_data(files, simba_docs) def date_to_epoch(date_str: str) -> float: split_date = date_str.split("-") print(split_date) date = datetime.datetime( int(split_date[0]), int(split_date[1]), int(split_date[2]), 0, 0, 0, ) return date.timestamp() def chunk_data(docs: list[dict[str, Union[str, Any]]], collection): # Step 2: Create chunks chunker = Chunker(collection) print(f"chunking {len(docs)} documents") print(docs) texts: list[str] = [doc["content"] for doc in docs] for index, text in enumerate(texts): metadata = { "created_date": date_to_epoch(docs[index]["created_date"]), } chunker.chunk_document( document=text, metadata=metadata, ) def consult_oracle(input: str, collection): # Ask qg = QueryGenerator() metadata_filter = qg.get_query("input") print(metadata_filter) embeddings = Chunker.embedding_fx(input=[input]) results = collection.query( query_texts=[input], query_embeddings=embeddings, where=metadata_filter, ) print(results) # Generate output = ollama.generate( model="gemma3n:e4b", prompt=f"You are a helpful assistant that understandings veterinary terms. Using the following data, help answer the user's query by providing as many details as possible. Using this data: {results}. Respond to this prompt: {input}", ) print(output["response"]) def paperless_workflow(input): # Step 1: Get the text ppngx = PaperlessNGXService() docs = ppngx.get_data() chunk_data(docs, collection=simba_docs) consult_oracle(input, simba_docs) if __name__ == "__main__": args = parser.parse_args() if args.reindex: # logging.info(msg="Fetching documents from Paperless-NGX") # ppngx = PaperlessNGXService() # docs = ppngx.get_data() # logging.info(msg=f"Fetched {len(docs)} documents") # # logging.info(msg="Chunking documents now ...") # chunk_data(docs, collection=simba_docs) # logging.info(msg="Done chunking documents") index_using_pdf_llm() if args.query: logging.info("Consulting oracle ...") consult_oracle( input=args.query, collection=simba_docs, ) else: print("please provide a query")