35 Commits

Author SHA1 Message Date
Ryan Chen
5054b4a859 Added conversation history 2025-10-23 22:28:41 -04:00
Ryan Chen
8479898cc4 Logging 2025-10-16 22:43:14 -04:00
Ryan Chen
acaf681927 Metadata filtering 2025-10-16 22:36:21 -04:00
Ryan Chen
2bbe33fedc Starting attempt #2 at metadata filtering 2025-10-14 22:13:01 -04:00
Ryan Chen
b872750444 Only use OpenAI for embedding 2025-10-14 20:06:32 -04:00
Ryan Chen
376baccadb message-style frontend 2025-10-10 23:28:41 -04:00
Ryan Chen
c978b1a255 Reducing startup time/cost 2025-10-08 23:21:22 -04:00
Ryan Chen
51b9932389 fixing loal llm 2025-10-08 22:52:49 -04:00
Ryan Chen
ebf39480b6 urf 2025-10-08 22:46:16 -04:00
Ryan Chen
e4a04331cb add some more debugging 2025-10-08 21:17:45 -04:00
Ryan Chen
166ffb4c09 i only ship bugs 2025-10-08 21:13:15 -04:00
Ryan Chen
64e286e623 oops 2025-10-08 21:07:33 -04:00
Ryan Chen
c6c14729dd interseting 2025-10-08 21:03:42 -04:00
Ryan Chen
910097d13b data 2025-10-05 20:31:46 -04:00
Ryan Chen
0bb3e3172b adding image processing pipeline immich -> paperless 2025-10-04 08:54:10 -04:00
Ryan Chen
24b30bc8a3 Adding Simba mode 2025-10-03 20:25:57 -04:00
Ryan Chen
3ffc95a1b0 Switch to OpenAI embeddings for ChromaDB
Replace Ollama embedding function with OpenAI's text-embedding-3-small
model for improved embedding quality and consistency.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-02 21:05:17 -04:00
Ryan Chen
c5091dc07a Configure Docker for Linux host networking and add startup reindex
- Switch to host network mode for direct access to Ollama on host
- Update OLLAMA_URL to use localhost:11434
- Add startup.sh script to trigger reindex before app starts
- Update Dockerfile to execute startup script

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-02 21:02:55 -04:00
Ryan Chen
c140758560 asfd 2025-10-02 20:57:19 -04:00
Ryan Chen
ab3a0eb442 Reorganize Dockerfile to copy application code before frontend build
Move Python application code copy before frontend build step to improve
Dockerfile organization and ensure all app code is available earlier.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-02 20:48:52 -04:00
Ryan Chen
c619d78922 Adding axios 2025-10-02 20:46:10 -04:00
Ryan Chen
c20ae0a4b9 Add missing @tailwindcss/postcss dependency to frontend
Fix Docker build failure by adding @tailwindcss/postcss package
required by postcss.config.mjs

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-02 20:44:49 -04:00
Ryan Chen
26cc01b58b Add frontend build step to Dockerfile
Install Node.js and Yarn, then build the raggr-frontend during Docker image build process.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-02 20:42:01 -04:00
Ryan Chen
746b60e070 Switch to using torrtle/simbarag:latest Docker image
Replace local build with pre-built image from Docker Hub

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-02 20:39:36 -04:00
Ryan Chen
577c9144ac Switch Dockerfile to use uv for dependency management
- Install uv via official installer script
- Replace pip with uv pip install --system
- Add uv to PATH for container usage

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-02 20:36:45 -04:00
Ryan Chen
2b2891bd79 Fix and add missing dependencies to pyproject.toml
- Fix dotenv package name to python-dotenv
- Add pillow for image processing
- Add pymupdf for PDF handling

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-02 20:34:59 -04:00
Ryan Chen
03b033e9a4 Configure ollama to use external host instead of docker service
- Update all ollama clients to use configurable OLLAMA_URL environment variable
- Remove ollama service from docker-compose.yml to use external ollama instance
- Configure docker-compose to connect to host ollama via 172.17.0.1:11434 (Linux) or host.docker.internal (macOS/Windows)
- Add cross-platform compatibility with extra_hosts mapping
- Update embedding function fallback URL for consistency

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-02 20:29:48 -04:00
Ryan Chen
a640ae5fed Docker stuff 2025-10-02 20:21:48 -04:00
Ryan Chen
99c98b7e42 yeet 2025-10-02 19:21:24 -04:00
ryan
a69f7864f3 Merge pull request 'yeat' (#3) from rc/9-metadata-date-filtering into main
Reviewed-on: #3
2025-08-07 17:43:59 -04:00
Ryan Chen
679cfb08e4 yeat 2025-08-07 17:43:24 -04:00
ryan
fc504d3e9c Merge pull request 'Adding some funny stuff' (#2) from data-preprocessing into main
Reviewed-on: #2

implements #1
2025-07-30 20:30:34 -04:00
Ryan Chen
c7152d3f32 Moving chromadb to env var 2025-07-30 20:27:03 -04:00
Ryan Chen
0a88a03c90 Expanded context window, CLI'd the app, and added preprocessing 2025-07-30 19:58:29 -04:00
Ryan Chen
b43ef63449 Adding some funny stuff 2025-07-29 22:59:40 -04:00
34 changed files with 5309 additions and 89 deletions

16
.dockerignore Normal file
View File

@@ -0,0 +1,16 @@
.git
.gitignore
README.md
.env
.DS_Store
chromadb/
chroma_db/
raggr-frontend/node_modules/
__pycache__/
*.pyc
*.pyo
*.pyd
.Python
.venv/
venv/
.pytest_cache/

1
.python-version Normal file
View File

@@ -0,0 +1 @@
3.13

46
Dockerfile Normal file
View File

@@ -0,0 +1,46 @@
FROM python:3.13-slim
WORKDIR /app
# Install system dependencies, Node.js, Yarn, and uv
RUN apt-get update && apt-get install -y \
build-essential \
curl \
&& curl -fsSL https://deb.nodesource.com/setup_20.x | bash - \
&& apt-get install -y nodejs \
&& npm install -g yarn \
&& rm -rf /var/lib/apt/lists/* \
&& curl -LsSf https://astral.sh/uv/install.sh | sh
# Add uv to PATH
ENV PATH="/root/.local/bin:$PATH"
# Copy dependency files
COPY pyproject.toml ./
# Install Python dependencies using uv
RUN uv pip install --system -e .
# Copy application code
COPY *.py ./
COPY startup.sh ./
RUN chmod +x startup.sh
# Copy frontend code and build
COPY raggr-frontend ./raggr-frontend
WORKDIR /app/raggr-frontend
RUN yarn install && yarn build
WORKDIR /app
# Create ChromaDB directory
RUN mkdir -p /app/chromadb
# Expose port
EXPOSE 8080
# Set environment variables
ENV PYTHONPATH=/app
ENV CHROMADB_PATH=/app/chromadb
# Run the startup script
CMD ["./startup.sh"]

102
app.py Normal file
View File

@@ -0,0 +1,102 @@
import os
from quart import Quart, request, jsonify, render_template, send_from_directory
from tortoise.contrib.quart import register_tortoise
from quart_jwt_extended import JWTManager
from main import consult_simba_oracle
from blueprints.conversation.logic import (
get_the_only_conversation,
add_message_to_conversation,
)
app = Quart(
__name__,
static_folder="raggr-frontend/dist/static",
template_folder="raggr-frontend/dist",
)
app.config["JWT_SECRET_KEY"] = os.getenv("JWT_SECRET_KEY", "SECRET_KEY")
jwt = JWTManager(app)
# Initialize Tortoise ORM
register_tortoise(
app,
db_url=os.getenv("DATABASE_URL", "sqlite://raggr.db"),
modules={"models": ["blueprints.conversation.models"]},
generate_schemas=True,
)
# Serve React static files
@app.route("/static/<path:filename>")
async def static_files(filename):
return await send_from_directory(app.static_folder, filename)
# Serve the React app for all routes (catch-all)
@app.route("/", defaults={"path": ""})
@app.route("/<path:path>")
async def serve_react_app(path):
if path and os.path.exists(os.path.join(app.template_folder, path)):
return await send_from_directory(app.template_folder, path)
return await render_template("index.html")
@app.route("/api/query", methods=["POST"])
async def query():
data = await request.get_json()
query = data.get("query")
# add message to database
conversation = await get_the_only_conversation()
print(conversation)
await add_message_to_conversation(
conversation=conversation, message=query, speaker="user"
)
response = consult_simba_oracle(query)
await add_message_to_conversation(
conversation=conversation, message=response, speaker="simba"
)
return jsonify({"response": response})
@app.route("/api/messages", methods=["GET"])
async def get_messages():
conversation = await get_the_only_conversation()
# Prefetch related messages
await conversation.fetch_related("messages")
# Manually serialize the conversation with messages
messages = []
for msg in conversation.messages:
messages.append(
{
"id": str(msg.id),
"text": msg.text,
"speaker": msg.speaker.value,
"created_at": msg.created_at.isoformat(),
}
)
return jsonify(
{
"id": str(conversation.id),
"name": conversation.name,
"messages": messages,
"created_at": conversation.created_at.isoformat(),
"updated_at": conversation.updated_at.isoformat(),
}
)
# @app.route("/api/ingest", methods=["POST"])
# def webhook():
# data = request.get_json()
# print(data)
# return jsonify({"status": "received"})
if __name__ == "__main__":
app.run(host="0.0.0.0", port=8080, debug=True)

View File

@@ -0,0 +1,17 @@
from quart import Blueprint, jsonify
from .models import (
Conversation,
PydConversation,
)
conversation_blueprint = Blueprint(
"conversation_api", __name__, url_prefix="/api/conversation"
)
@conversation_blueprint.route("/<conversation_id>")
async def get_conversation(conversation_id: str):
conversation = await Conversation.get(id=conversation_id)
serialized_conversation = await PydConversation.from_tortoise_orm(conversation)
return jsonify(serialized_conversation.model_dump_json())

View File

@@ -0,0 +1,32 @@
from .models import Conversation, ConversationMessage
async def create_conversation(name: str = "") -> Conversation:
conversation = await Conversation.create(name=name)
return conversation
async def add_message_to_conversation(
conversation: Conversation,
message: str,
speaker: str,
) -> ConversationMessage:
print(conversation, message, speaker)
message = await ConversationMessage.create(
text=message,
speaker=speaker,
conversation=conversation,
)
return message
async def get_the_only_conversation() -> Conversation:
try:
conversation = await Conversation.all().first()
if conversation is None:
conversation = await Conversation.create(name="simba_chat")
except Exception as _e:
conversation = await Conversation.create(name="simba_chat")
return conversation

View File

@@ -0,0 +1,41 @@
import enum
from tortoise.models import Model
from tortoise import fields
from tortoise.contrib.pydantic import (
pydantic_queryset_creator,
pydantic_model_creator,
)
class Speaker(enum.Enum):
USER = "user"
SIMBA = "simba"
class Conversation(Model):
id = fields.UUIDField(primary_key=True)
name = fields.CharField(max_length=255)
created_at = fields.DatetimeField(auto_now_add=True)
updated_at = fields.DatetimeField(auto_now=True)
class Meta:
table = "conversations"
class ConversationMessage(Model):
id = fields.UUIDField(primary_key=True)
text = fields.TextField()
conversation = fields.ForeignKeyField(
"models.Conversation", related_name="messages"
)
created_at = fields.DatetimeField(auto_now_add=True)
speaker = fields.CharEnumField(enum_type=Speaker, max_length=10)
class Meta:
table = "conversation_messages"
PydConversationMessage = pydantic_model_creator(ConversationMessage)
PydConversation = pydantic_model_creator(Conversation, name="Conversation")
PydListConversationMessage = pydantic_queryset_creator(ConversationMessage)

142
chunker.py Normal file
View File

@@ -0,0 +1,142 @@
import os
from math import ceil
import re
from typing import Union
from uuid import UUID, uuid4
from ollama import Client
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
from dotenv import load_dotenv
from llm import LLMClient
load_dotenv()
ollama_client = Client(
host=os.getenv("OLLAMA_HOST", "http://localhost:11434"), timeout=10.0
)
def remove_headers_footers(text, header_patterns=None, footer_patterns=None):
if header_patterns is None:
header_patterns = [r"^.*Header.*$"]
if footer_patterns is None:
footer_patterns = [r"^.*Footer.*$"]
for pattern in header_patterns + footer_patterns:
text = re.sub(pattern, "", text, flags=re.MULTILINE)
return text.strip()
def remove_special_characters(text, special_chars=None):
if special_chars is None:
special_chars = r"[^A-Za-z0-9\s\.,;:\'\"\?\!\-]"
text = re.sub(special_chars, "", text)
return text.strip()
def remove_repeated_substrings(text, pattern=r"\.{2,}"):
text = re.sub(pattern, ".", text)
return text.strip()
def remove_extra_spaces(text):
text = re.sub(r"\n\s*\n", "\n\n", text)
text = re.sub(r"\s+", " ", text)
return text.strip()
def preprocess_text(text):
# Remove headers and footers
text = remove_headers_footers(text)
# Remove special characters
text = remove_special_characters(text)
# Remove repeated substrings like dots
text = remove_repeated_substrings(text)
# Remove extra spaces between lines and within lines
text = remove_extra_spaces(text)
# Additional cleaning steps can be added here
return text.strip()
class Chunk:
def __init__(
self,
text: str,
size: int,
document_id: UUID,
chunk_id: int,
embedding,
):
self.text = text
self.size = size
self.document_id = document_id
self.chunk_id = chunk_id
self.embedding = embedding
class Chunker:
def __init__(self, collection) -> None:
self.collection = collection
self.llm_client = LLMClient()
def embedding_fx(self, inputs):
openai_embedding_fx = OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"),
model_name="text-embedding-3-small",
)
return openai_embedding_fx(inputs)
def chunk_document(
self,
document: str,
chunk_size: int = 1000,
metadata: dict[str, Union[str, float]] = {},
) -> list[Chunk]:
doc_uuid = uuid4()
chunk_size = min(chunk_size, len(document)) or 1
chunks = []
num_chunks = ceil(len(document) / chunk_size)
document_length = len(document)
for i in range(num_chunks):
curr_pos = i * num_chunks
to_pos = (
curr_pos + chunk_size
if curr_pos + chunk_size < document_length
else document_length
)
text_chunk = self.clean_document(document[curr_pos:to_pos])
embedding = self.embedding_fx([text_chunk])
self.collection.add(
ids=[str(doc_uuid) + ":" + str(i)],
documents=[text_chunk],
embeddings=embedding,
metadatas=[metadata],
)
return chunks
def clean_document(self, document: str) -> str:
"""This function will remove information that is noise or already known.
Example: We already know all the things in here are Simba-related, so we don't need things like
"Sumamry of simba's visit"
"""
document = document.replace("\\n", "")
document = document.strip()
return preprocess_text(document)

165
cleaner.py Normal file
View File

@@ -0,0 +1,165 @@
import os
import sys
import tempfile
import argparse
from dotenv import load_dotenv
import ollama
from PIL import Image
import fitz
from request import PaperlessNGXService
load_dotenv()
# Configure ollama client with URL from environment or default to localhost
ollama_client = ollama.Client(host=os.getenv("OLLAMA_URL", "http://localhost:11434"))
parser = argparse.ArgumentParser(description="use llm to clean documents")
parser.add_argument("document_id", type=str, help="questions about simba's health")
def pdf_to_image(filepath: str, dpi=300) -> list[str]:
"""Returns the filepaths to the created images"""
image_temp_files = []
try:
pdf_document = fitz.open(filepath)
print(f"\nConverting '{os.path.basename(filepath)}' to temporary images...")
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
zoom = dpi / 72
mat = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix=mat)
# Create a temporary file for the image. delete=False is crucial.
with tempfile.NamedTemporaryFile(
delete=False,
suffix=".png",
prefix=f"pdf_page_{page_num + 1}_",
) as temp_image_file:
temp_image_path = temp_image_file.name
# Save the pixel data to the temporary file
pix.save(temp_image_path)
image_temp_files.append(temp_image_path)
print(
f" -> Saved page {page_num + 1} to temporary file: '{temp_image_path}'"
)
print("\nConversion successful! ✨")
return image_temp_files
except Exception as e:
print(f"An error occurred during PDF conversion: {e}", file=sys.stderr)
# Clean up any image files that were created before the error
for path in image_temp_files:
os.remove(path)
return []
def merge_images_vertically_to_tempfile(image_paths):
"""
Merges a list of images vertically and saves the result to a temporary file.
Args:
image_paths (list): A list of strings, where each string is the
filepath to an image.
Returns:
str: The filepath of the temporary merged image file.
"""
if not image_paths:
print("Error: The list of image paths is empty.")
return None
# Open all images and check for consistency
try:
images = [Image.open(path) for path in image_paths]
except FileNotFoundError as e:
print(f"Error: Could not find image file: {e}")
return None
widths, heights = zip(*(img.size for img in images))
max_width = max(widths)
# All images must have the same width
if not all(width == max_width for width in widths):
print("Warning: Images have different widths. They will be resized.")
resized_images = []
for img in images:
if img.size[0] != max_width:
img = img.resize(
(max_width, int(img.size[1] * (max_width / img.size[0])))
)
resized_images.append(img)
images = resized_images
heights = [img.size[1] for img in images]
# Calculate the total height of the merged image
total_height = sum(heights)
# Create a new blank image with the combined dimensions
merged_image = Image.new("RGB", (max_width, total_height))
# Paste each image onto the new blank image
y_offset = 0
for img in images:
merged_image.paste(img, (0, y_offset))
y_offset += img.height
# Create a temporary file and save the image
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
temp_path = temp_file.name
merged_image.save(temp_path)
temp_file.close()
print(f"Successfully merged {len(images)} images into temporary file: {temp_path}")
return temp_path
OCR_PROMPT = """
You job is to extract text from the images I provide you. Extract every bit of the text in the image. Don't say anything just do your job. Text should be same as in the images. If there are multiple images, categorize the transcriptions by page.
Things to avoid:
- Don't miss anything to extract from the images
Things to include:
- Include everything, even anything inside [], (), {} or anything.
- Include any repetitive things like "..." or anything
- If you think there is any mistake in image just include it too
Someone will kill the innocent kittens if you don't extract the text exactly. So, make sure you extract every bit of the text. Only output the extracted text.
"""
def summarize_pdf_image(filepaths: list[str]):
res = ollama_client.chat(
model="gemma3:4b",
messages=[
{
"role": "user",
"content": OCR_PROMPT,
"images": filepaths,
}
],
)
return res["message"]["content"]
if __name__ == "__main__":
args = parser.parse_args()
ppngx = PaperlessNGXService()
if args.document_id:
doc_id = args.document_id
file = ppngx.get_doc_by_id(doc_id=doc_id)
pdf_path = ppngx.download_pdf_from_id(doc_id)
print(pdf_path)
image_paths = pdf_to_image(filepath=pdf_path)
summary = summarize_pdf_image(filepaths=image_paths)
print(summary)
file["content"] = summary
print(file)
ppngx.upload_cleaned_content(doc_id, file)

17
docker-compose.yml Normal file
View File

@@ -0,0 +1,17 @@
version: "3.8"
services:
raggr:
image: torrtle/simbarag:latest
network_mode: host
environment:
- PAPERLESS_TOKEN=${PAPERLESS_TOKEN}
- BASE_URL=${BASE_URL}
- OLLAMA_URL=${OLLAMA_URL:-http://localhost:11434}
- CHROMADB_PATH=/app/chromadb
- OPENAI_API_KEY=${OPENAI_API_KEY}
volumes:
- chromadb_data:/app/chromadb
volumes:
chromadb_data:

83
image_process.py Normal file
View File

@@ -0,0 +1,83 @@
from ollama import Client
import argparse
import os
import logging
from PIL import Image, ExifTags
from pillow_heif import register_heif_opener
from pydantic import BaseModel
from dotenv import load_dotenv
load_dotenv()
register_heif_opener()
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(
prog="SimbaImageProcessor",
description="What the program does",
epilog="Text at the bottom of help",
)
parser.add_argument("filepath")
client = Client(host=os.getenv("OLLAMA_HOST", "http://localhost:11434"))
class SimbaImageDescription(BaseModel):
image_date: str
description: str
def describe_simba_image(input):
logging.info("Opening image of Simba ...")
if "heic" in input.lower() or "heif" in input.lower():
new_filepath = input.split(".")[0] + ".jpg"
img = Image.open(input)
img.save(new_filepath, "JPEG")
logging.info("Extracting EXIF...")
exif = {
ExifTags.TAGS[k]: v for k, v in img.getexif().items() if k in ExifTags.TAGS
}
img = Image.open(new_filepath)
input = new_filepath
else:
img = Image.open(input)
logging.info("Extracting EXIF...")
exif = {
ExifTags.TAGS[k]: v for k, v in img.getexif().items() if k in ExifTags.TAGS
}
if "MakerNote" in exif:
exif.pop("MakerNote")
logging.info(exif)
prompt = f"Simba is an orange cat belonging to Ryan Chen. In 2025, they lived in New York. In 2024, they lived in California. Analyze the following image and tell me what Simba seems to be doing. Be extremely descriptive about Simba, things in the background, and the setting of the image. I will also include the EXIF data of the image, please use it to help you determine information about Simba. EXIF: {exif}. Put the notes in the description field and the date in the image_date field."
logging.info("Sending info to Ollama ...")
response = client.chat(
model="gemma3:4b",
messages=[
{
"role": "system",
"content": "you are a very shrewd and descriptive note taker. all of your responses will be formatted like notes in bullet points. be very descriptive. do not leave a single thing out.",
},
{"role": "user", "content": prompt, "images": [input]},
],
format=SimbaImageDescription.model_json_schema(),
)
result = SimbaImageDescription.model_validate_json(response["message"]["content"])
return result
if __name__ == "__main__":
args = parser.parse_args()
if args.filepath:
logging.info
describe_simba_image(input=args.filepath)

115
index_immich.py Normal file
View File

@@ -0,0 +1,115 @@
import httpx
import os
from pathlib import Path
import logging
import tempfile
from image_process import describe_simba_image
from request import PaperlessNGXService
import sqlite3
logging.basicConfig(level=logging.INFO)
from dotenv import load_dotenv
load_dotenv()
# Configuration from environment variables
IMMICH_URL = os.getenv("IMMICH_URL", "http://localhost:2283")
API_KEY = os.getenv("IMMICH_API_KEY")
PERSON_NAME = os.getenv("PERSON_NAME", "Simba") # Name of the tagged person/pet
DOWNLOAD_DIR = os.getenv("DOWNLOAD_DIR", "./simba_photos")
# Set up headers
headers = {"x-api-key": API_KEY, "Content-Type": "application/json"}
VISITED = {}
if __name__ == "__main__":
conn = sqlite3.connect("./visited.db")
c = conn.cursor()
c.execute("select immich_id from visited")
rows = c.fetchall()
for row in rows:
VISITED.add(row[0])
ppngx = PaperlessNGXService()
people_url = f"{IMMICH_URL}/api/search/person?name=Simba"
people = httpx.get(people_url, headers=headers).json()
simba_id = people[0]["id"]
ids = {}
asset_search = f"{IMMICH_URL}/api/search/smart"
request_body = {"query": "orange cat"}
results = httpx.post(asset_search, headers=headers, json=request_body)
assets = results.json()["assets"]
for asset in assets["items"]:
if asset["type"] == "IMAGE" and asset["id"] not in VISITED:
ids[asset["id"]] = asset.get("originalFileName")
nextPage = assets.get("nextPage")
# while nextPage != None:
# logging.info(f"next page: {nextPage}")
# request_body["page"] = nextPage
# results = httpx.post(asset_search, headers=headers, json=request_body)
# assets = results.json()["assets"]
# for asset in assets["items"]:
# if asset["type"] == "IMAGE":
# ids.add(asset['id'])
# nextPage = assets.get("nextPage")
asset_search = f"{IMMICH_URL}/api/search/smart"
request_body = {"query": "simba"}
results = httpx.post(asset_search, headers=headers, json=request_body)
for asset in results.json()["assets"]["items"]:
if asset["type"] == "IMAGE":
ids[asset["id"]] = asset.get("originalFileName")
for immich_asset_id, immich_filename in ids.items():
try:
response = httpx.get(
f"{IMMICH_URL}/api/assets/{immich_asset_id}/original", headers=headers
)
path = os.path.join("/Users/ryanchen/Programs/raggr", immich_filename)
file = open(path, "wb+")
for chunk in response.iter_bytes(chunk_size=8192):
file.write(chunk)
logging.info("Processing image ...")
description = describe_simba_image(path)
image_description = description.description
image_date = description.image_date
description_filepath = os.path.join(
"/Users/ryanchen/Programs/raggr", f"SIMBA_DESCRIBE_001.txt"
)
file = open(description_filepath, "w+")
file.write(image_description)
file.close()
file = open(description_filepath, "rb")
ppngx.upload_description(
description_filepath=description_filepath,
file=file,
title="SIMBA_DESCRIBE_001.txt",
exif_date=image_date,
)
file.close()
c.execute("INSERT INTO visited (immich_id) values (?)", (immich_asset_id,))
conn.commit()
logging.info("Processing complete. Deleting file.")
os.remove(file.name)
except Exception as e:
logging.info(f"something went wrong for {immich_filename}")
logging.info(e)
conn.close()

64
llm.py Normal file
View File

@@ -0,0 +1,64 @@
import os
from ollama import Client
from openai import OpenAI
import logging
logging.basicConfig(level=logging.INFO)
class LLMClient:
def __init__(self):
try:
self.ollama_client = Client(
host=os.getenv("OLLAMA_URL", "http://localhost:11434"), timeout=10.0
)
self.ollama_client.chat(
model="gemma3:4b", messages=[{"role": "system", "content": "test"}]
)
self.PROVIDER = "ollama"
logging.info("Using Ollama as LLM backend")
except Exception as e:
print(e)
self.openai_client = OpenAI()
self.PROVIDER = "openai"
logging.info("Using OpenAI as LLM backend")
def chat(
self,
prompt: str,
system_prompt: str,
):
if self.PROVIDER == "ollama":
response = self.ollama_client.chat(
model="gemma3:4b",
messages=[
{
"role": "system",
"content": system_prompt,
},
{"role": "user", "content": prompt},
],
)
print(response)
output = response.message.content
elif self.PROVIDER == "openai":
response = self.openai_client.responses.create(
model="gpt-4o-mini",
input=[
{
"role": "system",
"content": system_prompt,
},
{"role": "user", "content": prompt},
],
)
output = response.output_text
return output
if __name__ == "__main__":
client = Client()
client.chat(model="gemma3:4b", messages=[{"role": "system", "promp": "hack"}])

295
main.py
View File

@@ -1,102 +1,243 @@
import ollama
import datetime
import logging
import os
from uuid import uuid4, UUID
import sqlite3
import argparse
import chromadb
import ollama
from request import PaperlessNGXService
from chunker import Chunker
from cleaner import pdf_to_image, summarize_pdf_image
from llm import LLMClient
from query import QueryGenerator
from math import ceil
import chromadb
from chromadb.utils.embedding_functions.ollama_embedding_function import (
OllamaEmbeddingFunction,
)
from dotenv import load_dotenv
client = chromadb.EphemeralClient()
collection = client.create_collection(name="docs")
_dotenv_loaded = load_dotenv()
load_dotenv()
class Chunk:
def __init__(
self,
text: str,
size: int,
document_id: UUID,
chunk_id: int,
embedding,
):
self.text = text
self.size = size
self.document_id = document_id
self.chunk_id = chunk_id
self.embedding = embedding
class Chunker:
def __init__(self) -> None:
self.embedding_fx = OllamaEmbeddingFunction(
url=os.getenv("OLLAMA_URL", ""),
model_name="mxbai-embed-large",
# Configure ollama client with URL from environment or default to localhost
ollama_client = ollama.Client(
host=os.getenv("OLLAMA_URL", "http://localhost:11434"), timeout=10.0
)
pass
client = chromadb.PersistentClient(path=os.getenv("CHROMADB_PATH", ""))
simba_docs = client.get_or_create_collection(name="simba_docs2")
feline_vet_lookup = client.get_or_create_collection(name="feline_vet_lookup")
def chunk_document(self, document: str, chunk_size: int = 300) -> list[Chunk]:
doc_uuid = uuid4()
chunks = []
num_chunks = ceil(len(document) / chunk_size)
document_length = len(document)
for i in range(num_chunks):
curr_pos = i * num_chunks
to_pos = (
curr_pos + num_chunks
if curr_pos + num_chunks < document_length
else document_length
)
text_chunk = document[curr_pos:to_pos]
embedding = self.embedding_fx([text_chunk])
collection.add(
ids=[str(doc_uuid) + ":" + str(i)],
documents=[text_chunk],
embeddings=embedding,
parser = argparse.ArgumentParser(
description="An LLM tool to query information about Simba <3"
)
return chunks
parser.add_argument("query", type=str, help="questions about simba's health")
parser.add_argument(
"--reindex", action="store_true", help="re-index the simba documents"
)
parser.add_argument("--index", help="index a file")
ppngx = PaperlessNGXService()
llm_client = LLMClient()
embedding_fx = OllamaEmbeddingFunction(
url=os.getenv("OLLAMA_URL", ""),
model_name="mxbai-embed-large",
def index_using_pdf_llm(doctypes):
logging.info("reindex data...")
files = ppngx.get_data()
for file in files:
document_id: int = file["id"]
pdf_path = ppngx.download_pdf_from_id(id=document_id)
image_paths = pdf_to_image(filepath=pdf_path)
logging.info(f"summarizing {file}")
generated_summary = summarize_pdf_image(filepaths=image_paths)
file["content"] = generated_summary
chunk_data(files, simba_docs, doctypes=doctypes)
def date_to_epoch(date_str: str) -> float:
split_date = date_str.split("-")
date = datetime.datetime(
int(split_date[0]),
int(split_date[1]),
int(split_date[2]),
0,
0,
0,
)
return date.timestamp()
def chunk_data(docs, collection, doctypes):
# Step 2: Create chunks
chunker = Chunker(collection)
logging.info(f"chunking {len(docs)} documents")
texts: list[str] = [doc["content"] for doc in docs]
with sqlite3.connect("visited.db") as conn:
to_insert = []
c = conn.cursor()
for index, text in enumerate(texts):
metadata = {
"created_date": date_to_epoch(docs[index]["created_date"]),
"filename": docs[index]["original_file_name"],
"document_type": doctypes.get(docs[index]["document_type"], ""),
}
if doctypes:
metadata["type"] = doctypes.get(docs[index]["document_type"])
chunker.chunk_document(
document=text,
metadata=metadata,
)
to_insert.append((docs[index]["id"],))
c.executemany(
"INSERT INTO indexed_documents (paperless_id) values (?)", to_insert
)
conn.commit()
def chunk_text(texts: list[str], collection):
chunker = Chunker(collection)
for index, text in enumerate(texts):
metadata = {}
chunker.chunk_document(
document=text,
metadata=metadata,
)
def consult_oracle(input: str, collection):
import time
chunker = Chunker(collection)
start_time = time.time()
# Ask
logging.info("Starting query generation")
qg_start = time.time()
qg = QueryGenerator()
doctype_query = qg.get_doctype_query(input=input)
# metadata_filter = qg.get_query(input)
metadata_filter = {**doctype_query}
logging.info(metadata_filter)
qg_end = time.time()
logging.info(f"Query generation took {qg_end - qg_start:.2f} seconds")
logging.info("Starting embedding generation")
embedding_start = time.time()
embeddings = chunker.embedding_fx(inputs=[input])
embedding_end = time.time()
logging.info(
f"Embedding generation took {embedding_end - embedding_start:.2f} seconds"
)
logging.info("Starting collection query")
query_start = time.time()
results = collection.query(
query_texts=[input],
query_embeddings=embeddings,
where=metadata_filter,
)
query_end = time.time()
logging.info(f"Collection query took {query_end - query_start:.2f} seconds")
# Generate
logging.info("Starting LLM generation")
llm_start = time.time()
system_prompt = "You are a helpful assistant that understands veterinary terms."
prompt = f"Using the following data, help answer the user's query by providing as many details as possible. Using this data: {results}. Respond to this prompt: {input}"
output = llm_client.chat(prompt=prompt, system_prompt=system_prompt)
llm_end = time.time()
logging.info(f"LLM generation took {llm_end - llm_start:.2f} seconds")
total_time = time.time() - start_time
logging.info(f"Total consult_oracle execution took {total_time:.2f} seconds")
return output
def paperless_workflow(input):
# Step 1: Get the text
ppngx = PaperlessNGXService()
docs = ppngx.get_data()
texts = [doc["content"] for doc in docs]
# Step 2: Create chunks
chunker = Chunker()
chunk_data(docs, collection=simba_docs)
consult_oracle(input, simba_docs)
print(f"chunking {len(texts)} documents")
for text in texts:
chunker.chunk_document(document=text)
# Ask
input = "How many teeth has Simba had removed? Who is his current vet?"
embeddings = embedding_fx(input=[input])
results = collection.query(query_texts=[input], query_embeddings=embeddings)
print(results)
# Generate
output = ollama.generate(
model="gemma3n:e4b",
prompt=f"Using this data: {results}. Respond to this prompt: {input}",
def consult_simba_oracle(input: str):
return consult_oracle(
input=input,
collection=simba_docs,
)
print(output["response"])
def filter_indexed_files(docs):
with sqlite3.connect("visited.db") as conn:
c = conn.cursor()
c.execute(
"CREATE TABLE IF NOT EXISTS indexed_documents (id INTEGER PRIMARY KEY AUTOINCREMENT, paperless_id INTEGER)"
)
c.execute("SELECT paperless_id FROM indexed_documents")
rows = c.fetchall()
conn.commit()
visited = {row[0] for row in rows}
return [doc for doc in docs if doc["id"] not in visited]
if __name__ == "__main__":
args = parser.parse_args()
if args.reindex:
with sqlite3.connect("./visited.db") as conn:
c = conn.cursor()
c.execute("DELETE FROM indexed_documents")
logging.info("Fetching documents from Paperless-NGX")
ppngx = PaperlessNGXService()
docs = ppngx.get_data()
docs = filter_indexed_files(docs)
logging.info(f"Fetched {len(docs)} documents")
# Delete all chromadb data
ids = simba_docs.get(ids=None, limit=None, offset=0)
all_ids = ids["ids"]
if len(all_ids) > 0:
simba_docs.delete(ids=all_ids)
# Chunk documents
logging.info("Chunking documents now ...")
tag_lookup = ppngx.get_tags()
doctype_lookup = ppngx.get_doctypes()
chunk_data(docs, collection=simba_docs, doctypes=doctype_lookup)
logging.info("Done chunking documents")
# if args.index:
# with open(args.index) as file:
# extension = args.index.split(".")[-1]
# if extension == "pdf":
# pdf_path = ppngx.download_pdf_from_id(id=document_id)
# image_paths = pdf_to_image(filepath=pdf_path)
# print(f"summarizing {file}")
# generated_summary = summarize_pdf_image(filepaths=image_paths)
# elif extension in [".md", ".txt"]:
# chunk_text(texts=[file.readall()], collection=simba_docs)
if args.query:
logging.info("Consulting oracle ...")
print(
consult_oracle(
input=args.query,
collection=simba_docs,
)
)
else:
logging.info("please provide a query")

24
petmd_scrape_index.py Normal file
View File

@@ -0,0 +1,24 @@
from bs4 import BeautifulSoup
import chromadb
import httpx
client = chromadb.PersistentClient(path="/Users/ryanchen/Programs/raggr/chromadb")
# Scrape
BASE_URL = "https://www.vet.cornell.edu"
LIST_URL = "/departments-centers-and-institutes/cornell-feline-health-center/health-information/feline-health-topics"
QUERY_URL = BASE_URL + LIST_URL
r = httpx.get(QUERY_URL)
soup = BeautifulSoup(r.text)
container = soup.find("div", class_="field-body")
a_s = container.find_all("a", href=True)
new_texts = []
for link in a_s:
endpoint = link["href"]
query_url = BASE_URL + endpoint
r2 = httpx.get(query_url)
article_soup = BeautifulSoup(r2.text)

View File

@@ -4,4 +4,24 @@ version = "0.1.0"
description = "Add your description here"
readme = "README.md"
requires-python = ">=3.13"
dependencies = []
dependencies = [
"chromadb>=1.1.0",
"python-dotenv>=1.0.0",
"flask>=3.1.2",
"httpx>=0.28.1",
"ollama>=0.6.0",
"openai>=2.0.1",
"pydantic>=2.11.9",
"pillow>=10.0.0",
"pymupdf>=1.24.0",
"black>=25.9.0",
"pillow-heif>=1.1.1",
"flask-jwt-extended>=4.7.1",
"bcrypt>=5.0.0",
"pony>=0.7.19",
"flask-login>=0.6.3",
"quart>=0.20.0",
"tortoise-orm>=0.25.1",
"quart-jwt-extended>=0.1.0",
"pre-commit>=4.3.0",
]

194
query.py Normal file
View File

@@ -0,0 +1,194 @@
import json
import os
from typing import Literal
import datetime
from ollama import Client
from openai import OpenAI
from pydantic import BaseModel, Field
# Configure ollama client with URL from environment or default to localhost
ollama_client = Client(
host=os.getenv("OLLAMA_URL", "http://localhost:11434"), timeout=10.0
)
# This uses inferred filters — which means using LLM to create the metadata filters
class FilterOperation(BaseModel):
op: Literal["$gt", "$gte", "$eq", "$ne", "$lt", "$lte", "$in", "$nin"]
value: str | list[str]
class FilterQuery(BaseModel):
field_name: Literal["created_date, tags"]
op: FilterOperation
class AndQuery(BaseModel):
op: Literal["$and", "$or"]
subqueries: list[FilterQuery]
class GeneratedQuery(BaseModel):
fields: list[str]
extracted_metadata_fields: str
class Time(BaseModel):
time: int
DOCTYPE_OPTIONS = [
"Bill",
"Image Description",
"Insurance",
"Medical Record",
"Documentation",
"Letter",
]
class DocumentType(BaseModel):
type: list[str] = Field(description="type of document", enum=DOCTYPE_OPTIONS)
PROMPT = """
You are an information specialist that processes user queries. The current year is 2025. The user queries are all about
a cat, Simba, and its records. The types of records are listed below. Using the query, extract the
the date range the user is trying to query. You should return it as a JSON. The date tag is created_date. Return the date in epoch time.
If the created_date cannot be ascertained, set it to epoch time start.
You have several operators at your disposal:
- $gt: greater than
- $gte: greater than or equal
- $eq: equal
- $ne: not equal
- $lt: less than
- $lte: less than or equal to
- $in: in
- $nin: not in
Logical operators:
- $and, $or
### Example 1
Query: "Who is Simba's current vet?"
Metadata fields: "{"created_date"}"
Extracted metadata fields: {"created_date: {"$gt": "2025-01-01"}}
### Example 2
Query: "How many teeth has Simba had removed?"
Metadata fields: {}
Extracted metadata fields: {}
### Example 3
Query: "How many times has Simba been to the vet this year?"
Metadata fields: {"created_date"}
Extracted metadata fields: {"created_date": {"gt": "2025-01-01"}}
document_types:
- aftercare
- bill
- insurance claim
- medical records
Only return the extracted metadata fields. Make sure the extracted metadata fields are valid JSON
"""
DOCTYPE_PROMPT = f"""You are an information specialist that processes user queries. A query can have two tags attached from the following options. Based on the query, determine which of the following options is most appropriate: {",".join(DOCTYPE_OPTIONS)}
### Example 1
Query: "Who is Simba's current vet?"
Tags: ["Bill", "Medical Record"]
### Example 2
Query: "Who does Simba know?"
Tags: ["Letter", "Documentation"]
"""
class QueryGenerator:
def __init__(self) -> None:
pass
def date_to_epoch(self, date_str: str) -> float:
split_date = date_str.split("-")
date = datetime.datetime(
int(split_date[0]),
int(split_date[1]),
int(split_date[2]),
0,
0,
0,
)
return date.timestamp()
def get_doctype_query(self, input: str):
client = OpenAI()
response = client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are an information specialist that is really good at deciding what tags a query should have",
},
{"role": "user", "content": DOCTYPE_PROMPT + " " + input},
],
model="gpt-4o",
response_format={
"type": "json_schema",
"json_schema": {
"name": "document_type",
"schema": DocumentType.model_json_schema(),
},
},
)
response_json_str = response.choices[0].message.content
type_data = json.loads(response_json_str)
metadata_query = {"document_type": {"$in": type_data["type"]}}
return metadata_query
def get_query(self, input: str):
client = OpenAI()
response = client.responses.parse(
model="gpt-4o",
input=[
{"role": "system", "content": PROMPT},
{"role": "user", "content": input},
],
text_format=GeneratedQuery,
)
print(response.output)
query = json.loads(response.output_parsed.extracted_metadata_fields)
# response: ChatResponse = ollama_client.chat(
# model="gemma3n:e4b",
# messages=[
# {"role": "system", "content": PROMPT},
# {"role": "user", "content": input},
# ],
# format=GeneratedQuery.model_json_schema(),
# )
# query = json.loads(
# json.loads(response["message"]["content"])["extracted_metadata_fields"]
# )
# date_key = list(query["created_date"].keys())[0]
# query["created_date"][date_key] = self.date_to_epoch(
# query["created_date"][date_key]
# )
# if "$" not in date_key:
# query["created_date"]["$" + date_key] = query["created_date"][date_key]
return query
if __name__ == "__main__":
qg = QueryGenerator()
print(qg.get_doctype_query("How heavy is Simba?"))

16
raggr-frontend/.gitignore vendored Normal file
View File

@@ -0,0 +1,16 @@
# Local
.DS_Store
*.local
*.log*
# Dist
node_modules
dist/
# Profile
.rspack-profile-*/
# IDE
.vscode/*
!.vscode/extensions.json
.idea

36
raggr-frontend/README.md Normal file
View File

@@ -0,0 +1,36 @@
# Rsbuild project
## Setup
Install the dependencies:
```bash
pnpm install
```
## Get started
Start the dev server, and the app will be available at [http://localhost:3000](http://localhost:3000).
```bash
pnpm dev
```
Build the app for production:
```bash
pnpm build
```
Preview the production build locally:
```bash
pnpm preview
```
## Learn more
To learn more about Rsbuild, check out the following resources:
- [Rsbuild documentation](https://rsbuild.rs) - explore Rsbuild features and APIs.
- [Rsbuild GitHub repository](https://github.com/web-infra-dev/rsbuild) - your feedback and contributions are welcome!

View File

@@ -0,0 +1,26 @@
{
"name": "raggr-frontend",
"version": "1.0.0",
"private": true,
"type": "module",
"scripts": {
"build": "rsbuild build",
"dev": "rsbuild dev --open",
"preview": "rsbuild preview"
},
"dependencies": {
"axios": "^1.12.2",
"marked": "^16.3.0",
"react": "^19.1.1",
"react-dom": "^19.1.1",
"react-markdown": "^10.1.0"
},
"devDependencies": {
"@rsbuild/core": "^1.5.6",
"@rsbuild/plugin-react": "^1.4.0",
"@tailwindcss/postcss": "^4.0.0",
"@types/react": "^19.1.13",
"@types/react-dom": "^19.1.9",
"typescript": "^5.9.2"
}
}

View File

@@ -0,0 +1,5 @@
export default {
plugins: {
"@tailwindcss/postcss": {},
},
};

View File

@@ -0,0 +1,6 @@
import { defineConfig } from '@rsbuild/core';
import { pluginReact } from '@rsbuild/plugin-react';
export default defineConfig({
plugins: [pluginReact()],
});

Binary file not shown.

View File

@@ -0,0 +1,6 @@
@import "tailwindcss";
body {
margin: 0;
font-family: Inter, Avenir, Helvetica, Arial, sans-serif;
}

204
raggr-frontend/src/App.tsx Normal file
View File

@@ -0,0 +1,204 @@
import { useEffect, useState } from "react";
import axios from "axios";
import ReactMarkdown from "react-markdown";
import "./App.css";
type QuestionAnswer = {
question: string;
answer: string;
};
type QuestionBubbleProps = {
text: string;
};
type AnswerBubbleProps = {
text: string;
loading: string;
};
type QuestionAnswerPairProps = {
question: string;
answer: string;
loading: boolean;
};
type Conversation = {
title: string;
id: string;
};
type Message = {
text: string;
speaker: "simba" | "user";
};
type ConversationMenuProps = {
conversations: Conversation[];
};
const ConversationMenu = ({ conversations }: ConversationMenuProps) => {
return (
<div className="absolute bg-white w-md rounded-md shadow-xl m-4 p-4">
<p className="py-2 px-4 rounded-md w-full text-xl font-bold">askSimba!</p>
{conversations.map((conversation) => (
<p className="py-2 px-4 rounded-md hover:bg-stone-200 w-full text-xl font-bold cursor-pointer">
{conversation.title}
</p>
))}
</div>
);
};
const QuestionBubble = ({ text }: QuestionBubbleProps) => {
return <div className="rounded-md bg-stone-200 p-3">🤦: {text}</div>;
};
const AnswerBubble = ({ text, loading }: AnswerBubbleProps) => {
return (
<div className="rounded-md bg-orange-100 p-3">
{loading ? (
<div className="flex flex-col w-full animate-pulse gap-2">
<div className="flex flex-row gap-2 w-full">
<div className="bg-gray-400 w-1/2 p-3 rounded-lg" />
<div className="bg-gray-400 w-1/2 p-3 rounded-lg" />
</div>
<div className="flex flex-row gap-2 w-full">
<div className="bg-gray-400 w-1/3 p-3 rounded-lg" />
<div className="bg-gray-400 w-2/3 p-3 rounded-lg" />
</div>
</div>
) : (
<div className="flex flex-col">
<ReactMarkdown>{"🐈: " + text}</ReactMarkdown>
</div>
)}
</div>
);
};
const QuestionAnswerPair = ({
question,
answer,
loading,
}: QuestionAnswerPairProps) => {
return (
<div className="flex flex-col gap-4">
<QuestionBubble text={question} />
<AnswerBubble text={answer} loading={loading} />
</div>
);
};
const App = () => {
const [query, setQuery] = useState<string>("");
const [answer, setAnswer] = useState<string>("");
const [simbaMode, setSimbaMode] = useState<boolean>(false);
const [questionsAnswers, setQuestionsAnswers] = useState<QuestionAnswer[]>(
[],
);
const [messages, setMessages] = useState<Message[]>([]);
const [conversations, setConversations] = useState<Conversation[]>([
{ title: "simba meow meow", id: "uuid" },
]);
const simbaAnswers = ["meow.", "hiss...", "purrrrrr", "yowOWROWWowowr"];
useEffect(() => {
axios.get("/api/messages").then((result) => {
setMessages(
result.data.messages.map((message) => {
return {
text: message.text,
speaker: message.speaker,
};
}),
);
});
}, []);
const handleQuestionSubmit = () => {
let currMessages = messages.concat([{ text: query, speaker: "user" }]);
setMessages(currMessages);
if (simbaMode) {
console.log("simba mode activated");
const randomIndex = Math.floor(Math.random() * simbaAnswers.length);
const randomElement = simbaAnswers[randomIndex];
setAnswer(randomElement);
setQuestionsAnswers(
questionsAnswers.concat([
{
question: query,
answer: randomElement,
},
]),
);
return;
}
const payload = { query: query };
axios.post("/api/query", payload).then((result) => {
setQuestionsAnswers(
questionsAnswers.concat([
{ question: query, answer: result.data.response },
]),
);
setMessages(
currMessages.concat([{ text: result.data.response, speaker: "simba" }]),
);
});
};
const handleQueryChange = (event) => {
setQuery(event.target.value);
};
return (
<div className="h-screen bg-opacity-20">
<div className="bg-white/85 h-screen">
<div className="flex flex-row justify-center py-4">
<div className="flex flex-col gap-4 min-w-xl max-w-xl">
<header className="flex flex-row justify-center gap-2 grow sticky top-0 z-10 bg-white">
<h1 className="text-3xl">ask simba!</h1>
</header>
{/*{questionsAnswers.map((qa) => (
<QuestionAnswerPair question={qa.question} answer={qa.answer} />
))}*/}
{messages.map((msg) => {
if (msg.speaker == "simba") {
return <AnswerBubble text={msg.text} loading="" />;
}
return <QuestionBubble text={msg.text} />;
})}
<footer className="flex flex-col gap-2 sticky bottom-0">
<div className="flex flex-row justify-between gap-2 grow">
<textarea
type="text"
className="p-4 border border-blue-200 rounded-md grow bg-white"
onChange={handleQueryChange}
/>
</div>
<div className="flex flex-row justify-between gap-2 grow">
<button
className="p-4 border border-blue-400 bg-blue-200 hover:bg-blue-400 cursor-pointer rounded-md flex-grow"
onClick={() => handleQuestionSubmit()}
type="submit"
>
Submit
</button>
</div>
<div className="flex flex-row justify-center gap-2 grow">
<input
type="checkbox"
onChange={(event) => setSimbaMode(event.target.checked)}
/>
<p>simba mode?</p>
</div>
</footer>
</div>
</div>
</div>
</div>
);
};
export default App;

11
raggr-frontend/src/env.d.ts vendored Normal file
View File

@@ -0,0 +1,11 @@
/// <reference types="@rsbuild/core/types" />
/**
* Imports the SVG file as a React component.
* @requires [@rsbuild/plugin-svgr](https://npmjs.com/package/@rsbuild/plugin-svgr)
*/
declare module '*.svg?react' {
import type React from 'react';
const ReactComponent: React.FunctionComponent<React.SVGProps<SVGSVGElement>>;
export default ReactComponent;
}

View File

@@ -0,0 +1,13 @@
import React from 'react';
import ReactDOM from 'react-dom/client';
import App from './App';
const rootEl = document.getElementById('root');
if (rootEl) {
const root = ReactDOM.createRoot(rootEl);
root.render(
<React.StrictMode>
<App />
</React.StrictMode>,
);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

View File

@@ -0,0 +1,25 @@
{
"compilerOptions": {
"lib": ["DOM", "ES2020"],
"jsx": "react-jsx",
"target": "ES2020",
"noEmit": true,
"skipLibCheck": true,
"useDefineForClassFields": true,
/* modules */
"module": "ESNext",
"moduleDetection": "force",
"moduleResolution": "bundler",
"verbatimModuleSyntax": true,
"resolveJsonModule": true,
"allowImportingTsExtensions": true,
"noUncheckedSideEffectImports": true,
/* type checking */
"strict": true,
"noUnusedLocals": true,
"noUnusedParameters": true
},
"include": ["src"]
}

1424
raggr-frontend/yarn.lock Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,24 +1,86 @@
import os
import tempfile
import httpx
import logging
from dotenv import load_dotenv
load_dotenv()
logging.basicConfig(level=logging.INFO)
class PaperlessNGXService:
def __init__(self):
self.base_url = os.getenv("BASE_URL")
self.token = os.getenv("PAPERLESS_TOKEN")
self.url = f"http://{os.getenv("BASE_URL")}/api/documents/?query=simba"
self.headers = {"Authorization": f"Token {os.getenv("PAPERLESS_TOKEN")}"}
self.url = f"http://{os.getenv('BASE_URL')}/api/documents/?tags__id=8"
self.headers = {"Authorization": f"Token {os.getenv('PAPERLESS_TOKEN')}"}
def get_data(self):
print(f"Getting data from: {self.url}")
r = httpx.get(self.url, headers=self.headers)
return r.json()["results"]
results = r.json()["results"]
nextLink = r.json().get("next")
while nextLink:
r = httpx.get(nextLink, headers=self.headers)
results += r.json()["results"]
nextLink = r.json().get("next")
return results
def get_doc_by_id(self, doc_id: int):
url = f"http://{os.getenv('BASE_URL')}/api/documents/{doc_id}/"
r = httpx.get(url, headers=self.headers)
return r.json()
def download_pdf_from_id(self, id: int) -> str:
download_url = f"http://{os.getenv('BASE_URL')}/api/documents/{id}/download/"
response = httpx.get(
download_url, headers=self.headers, follow_redirects=True, timeout=30
)
response.raise_for_status()
# Use a temporary file for the downloaded PDF
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
temp_file.write(response.content)
temp_file.close()
temp_pdf_path = temp_file.name
pdf_to_process = temp_pdf_path
return pdf_to_process
def upload_cleaned_content(self, document_id, data):
PUTS_URL = f"http://{os.getenv('BASE_URL')}/api/documents/{document_id}/"
r = httpx.put(PUTS_URL, headers=self.headers, data=data)
r.raise_for_status()
def upload_description(self, description_filepath, file, title, exif_date: str):
POST_URL = f"http://{os.getenv('BASE_URL')}/api/documents/post_document/"
files = {"document": ("description_filepath", file, "application/txt")}
data = {
"title": title,
"create": exif_date,
"document_type": 3,
"tags": [7],
}
r = httpx.post(POST_URL, headers=self.headers, data=data, files=files)
r.raise_for_status()
def get_tags(self):
GET_URL = f"http://{os.getenv('BASE_URL')}/api/tags/"
r = httpx.get(GET_URL, headers=self.headers)
data = r.json()
return {tag["id"]: tag["name"] for tag in data["results"]}
def get_doctypes(self):
GET_URL = f"http://{os.getenv('BASE_URL')}/api/document_types/"
r = httpx.get(GET_URL, headers=self.headers)
data = r.json()
return {doctype["id"]: doctype["name"] for doctype in data["results"]}
if __name__ == "__main__":
pp = PaperlessNGXService()
print(pp.get_data()[0].keys())
pp.get_data()

7
startup.sh Normal file
View File

@@ -0,0 +1,7 @@
#!/bin/bash
echo "Starting reindex process..."
python main.py "" --reindex
echo "Starting Flask application..."
python app.py

2159
uv.lock generated Normal file

File diff suppressed because it is too large Load Diff