Compare commits
3 Commits
b698109183
...
data-prepr
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c7152d3f32 | ||
|
|
0a88a03c90 | ||
|
|
b43ef63449 |
127
chunker.py
Normal file
127
chunker.py
Normal file
@@ -0,0 +1,127 @@
|
||||
import os
|
||||
from math import ceil
|
||||
import re
|
||||
from uuid import UUID, uuid4
|
||||
|
||||
from chromadb.utils.embedding_functions.ollama_embedding_function import (
|
||||
OllamaEmbeddingFunction,
|
||||
)
|
||||
from dotenv import load_dotenv
|
||||
|
||||
|
||||
load_dotenv()
|
||||
|
||||
|
||||
def remove_headers_footers(text, header_patterns=None, footer_patterns=None):
|
||||
if header_patterns is None:
|
||||
header_patterns = [r"^.*Header.*$"]
|
||||
if footer_patterns is None:
|
||||
footer_patterns = [r"^.*Footer.*$"]
|
||||
|
||||
for pattern in header_patterns + footer_patterns:
|
||||
text = re.sub(pattern, "", text, flags=re.MULTILINE)
|
||||
|
||||
return text.strip()
|
||||
|
||||
|
||||
def remove_special_characters(text, special_chars=None):
|
||||
if special_chars is None:
|
||||
special_chars = r"[^A-Za-z0-9\s\.,;:\'\"\?\!\-]"
|
||||
|
||||
text = re.sub(special_chars, "", text)
|
||||
return text.strip()
|
||||
|
||||
|
||||
def remove_repeated_substrings(text, pattern=r"\.{2,}"):
|
||||
text = re.sub(pattern, ".", text)
|
||||
return text.strip()
|
||||
|
||||
|
||||
def remove_extra_spaces(text):
|
||||
text = re.sub(r"\n\s*\n", "\n\n", text)
|
||||
text = re.sub(r"\s+", " ", text)
|
||||
|
||||
return text.strip()
|
||||
|
||||
|
||||
def preprocess_text(text):
|
||||
# Remove headers and footers
|
||||
text = remove_headers_footers(text)
|
||||
|
||||
# Remove special characters
|
||||
text = remove_special_characters(text)
|
||||
|
||||
# Remove repeated substrings like dots
|
||||
text = remove_repeated_substrings(text)
|
||||
|
||||
# Remove extra spaces between lines and within lines
|
||||
text = remove_extra_spaces(text)
|
||||
|
||||
# Additional cleaning steps can be added here
|
||||
|
||||
return text.strip()
|
||||
|
||||
|
||||
class Chunk:
|
||||
def __init__(
|
||||
self,
|
||||
text: str,
|
||||
size: int,
|
||||
document_id: UUID,
|
||||
chunk_id: int,
|
||||
embedding,
|
||||
):
|
||||
self.text = text
|
||||
self.size = size
|
||||
self.document_id = document_id
|
||||
self.chunk_id = chunk_id
|
||||
self.embedding = embedding
|
||||
|
||||
|
||||
class Chunker:
|
||||
embedding_fx = OllamaEmbeddingFunction(
|
||||
url=os.getenv("OLLAMA_URL", ""),
|
||||
model_name="mxbai-embed-large",
|
||||
)
|
||||
|
||||
def __init__(self, collection) -> None:
|
||||
self.collection = collection
|
||||
|
||||
def chunk_document(self, document: str, chunk_size: int = 1000) -> list[Chunk]:
|
||||
doc_uuid = uuid4()
|
||||
|
||||
chunk_size = min(chunk_size, len(document))
|
||||
|
||||
chunks = []
|
||||
num_chunks = ceil(len(document) / chunk_size)
|
||||
document_length = len(document)
|
||||
|
||||
for i in range(num_chunks):
|
||||
curr_pos = i * num_chunks
|
||||
to_pos = (
|
||||
curr_pos + chunk_size
|
||||
if curr_pos + chunk_size < document_length
|
||||
else document_length
|
||||
)
|
||||
text_chunk = self.clean_document(document[curr_pos:to_pos])
|
||||
|
||||
embedding = self.embedding_fx([text_chunk])
|
||||
self.collection.add(
|
||||
ids=[str(doc_uuid) + ":" + str(i)],
|
||||
documents=[text_chunk],
|
||||
embeddings=embedding,
|
||||
)
|
||||
|
||||
return chunks
|
||||
|
||||
def clean_document(self, document: str) -> str:
|
||||
"""This function will remove information that is noise or already known.
|
||||
|
||||
Example: We already know all the things in here are Simba-related, so we don't need things like
|
||||
"Sumamry of simba's visit"
|
||||
"""
|
||||
|
||||
document = document.replace("\\n", "")
|
||||
document = document.strip()
|
||||
|
||||
return preprocess_text(document)
|
||||
128
main.py
128
main.py
@@ -1,102 +1,84 @@
|
||||
import ollama
|
||||
import logging
|
||||
import os
|
||||
from uuid import uuid4, UUID
|
||||
|
||||
import argparse
|
||||
import chromadb
|
||||
import ollama
|
||||
|
||||
|
||||
from request import PaperlessNGXService
|
||||
from chunker import Chunker
|
||||
|
||||
from math import ceil
|
||||
|
||||
import chromadb
|
||||
|
||||
from chromadb.utils.embedding_functions.ollama_embedding_function import (
|
||||
OllamaEmbeddingFunction,
|
||||
)
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
client = chromadb.EphemeralClient()
|
||||
collection = client.create_collection(name="docs")
|
||||
|
||||
load_dotenv()
|
||||
|
||||
client = chromadb.PersistentClient(path=os.getenv("CHROMADB_PATH", ""))
|
||||
simba_docs = client.get_or_create_collection(name="simba_docs")
|
||||
feline_vet_lookup = client.get_or_create_collection(name="feline_vet_lookup")
|
||||
|
||||
class Chunk:
|
||||
def __init__(
|
||||
self,
|
||||
text: str,
|
||||
size: int,
|
||||
document_id: UUID,
|
||||
chunk_id: int,
|
||||
embedding,
|
||||
):
|
||||
self.text = text
|
||||
self.size = size
|
||||
self.document_id = document_id
|
||||
self.chunk_id = chunk_id
|
||||
self.embedding = embedding
|
||||
|
||||
|
||||
class Chunker:
|
||||
def __init__(self) -> None:
|
||||
self.embedding_fx = OllamaEmbeddingFunction(
|
||||
url=os.getenv("OLLAMA_URL", ""),
|
||||
model_name="mxbai-embed-large",
|
||||
parser = argparse.ArgumentParser(
|
||||
description="An LLM tool to query information about Simba <3"
|
||||
)
|
||||
|
||||
pass
|
||||
|
||||
def chunk_document(self, document: str, chunk_size: int = 300) -> list[Chunk]:
|
||||
doc_uuid = uuid4()
|
||||
|
||||
chunks = []
|
||||
num_chunks = ceil(len(document) / chunk_size)
|
||||
document_length = len(document)
|
||||
|
||||
for i in range(num_chunks):
|
||||
curr_pos = i * num_chunks
|
||||
to_pos = (
|
||||
curr_pos + num_chunks
|
||||
if curr_pos + num_chunks < document_length
|
||||
else document_length
|
||||
)
|
||||
text_chunk = document[curr_pos:to_pos]
|
||||
|
||||
embedding = self.embedding_fx([text_chunk])
|
||||
collection.add(
|
||||
ids=[str(doc_uuid) + ":" + str(i)],
|
||||
documents=[text_chunk],
|
||||
embeddings=embedding,
|
||||
parser.add_argument("query", type=str, help="questions about simba's health")
|
||||
parser.add_argument(
|
||||
"--reindex", action="store_true", help="re-index the simba documents"
|
||||
)
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
embedding_fx = OllamaEmbeddingFunction(
|
||||
url=os.getenv("OLLAMA_URL", ""),
|
||||
model_name="mxbai-embed-large",
|
||||
)
|
||||
|
||||
# Step 1: Get the text
|
||||
ppngx = PaperlessNGXService()
|
||||
docs = ppngx.get_data()
|
||||
texts = [doc["content"] for doc in docs]
|
||||
|
||||
def chunk_data(texts: list[str], collection):
|
||||
# Step 2: Create chunks
|
||||
chunker = Chunker()
|
||||
chunker = Chunker(collection)
|
||||
|
||||
print(f"chunking {len(texts)} documents")
|
||||
for text in texts:
|
||||
chunker.chunk_document(document=text)
|
||||
|
||||
|
||||
def consult_oracle(input: str, collection):
|
||||
# Ask
|
||||
input = "How many teeth has Simba had removed? Who is his current vet?"
|
||||
embeddings = embedding_fx(input=[input])
|
||||
embeddings = Chunker.embedding_fx(input=[input])
|
||||
results = collection.query(query_texts=[input], query_embeddings=embeddings)
|
||||
print(results)
|
||||
|
||||
# Generate
|
||||
output = ollama.generate(
|
||||
model="gemma3n:e4b",
|
||||
prompt=f"Using this data: {results}. Respond to this prompt: {input}",
|
||||
prompt=f"You are a helpful assistant that understandings veterinary terms. Using the following data, help answer the user's query by providing as many details as possible. Using this data: {results}. Respond to this prompt: {input}",
|
||||
)
|
||||
|
||||
print(output["response"])
|
||||
|
||||
|
||||
def paperless_workflow(input):
|
||||
# Step 1: Get the text
|
||||
ppngx = PaperlessNGXService()
|
||||
docs = ppngx.get_data()
|
||||
texts = [doc["content"] for doc in docs]
|
||||
|
||||
chunk_data(texts, collection=simba_docs)
|
||||
consult_oracle(input, simba_docs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
if args.reindex:
|
||||
logging.info(msg="Fetching documents from Paperless-NGX")
|
||||
ppngx = PaperlessNGXService()
|
||||
docs = ppngx.get_data()
|
||||
texts = [doc["content"] for doc in docs]
|
||||
logging.info(msg=f"Fetched {len(texts)} documents")
|
||||
|
||||
logging.info(msg="Chunking documents now ...")
|
||||
chunk_data(texts, collection=simba_docs)
|
||||
logging.info(msg="Done chunking documents")
|
||||
|
||||
if args.query:
|
||||
logging.info("Consulting oracle ...")
|
||||
consult_oracle(
|
||||
input=args.query,
|
||||
collection=simba_docs,
|
||||
)
|
||||
else:
|
||||
print("please provide a query")
|
||||
|
||||
24
petmd_scrape_index.py
Normal file
24
petmd_scrape_index.py
Normal file
@@ -0,0 +1,24 @@
|
||||
from bs4 import BeautifulSoup
|
||||
import chromadb
|
||||
import httpx
|
||||
|
||||
client = chromadb.PersistentClient(path="/Users/ryanchen/Programs/raggr/chromadb")
|
||||
|
||||
# Scrape
|
||||
BASE_URL = "https://www.vet.cornell.edu"
|
||||
LIST_URL = "/departments-centers-and-institutes/cornell-feline-health-center/health-information/feline-health-topics"
|
||||
|
||||
QUERY_URL = BASE_URL + LIST_URL
|
||||
r = httpx.get(QUERY_URL)
|
||||
soup = BeautifulSoup(r.text)
|
||||
|
||||
container = soup.find("div", class_="field-body")
|
||||
a_s = container.find_all("a", href=True)
|
||||
|
||||
new_texts = []
|
||||
|
||||
for link in a_s:
|
||||
endpoint = link["href"]
|
||||
query_url = BASE_URL + endpoint
|
||||
r2 = httpx.get(query_url)
|
||||
article_soup = BeautifulSoup(r2.text)
|
||||
98
query.py
Normal file
98
query.py
Normal file
@@ -0,0 +1,98 @@
|
||||
import json
|
||||
from typing import Literal
|
||||
|
||||
from ollama import chat, ChatResponse
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
# This uses inferred filters — which means using LLM to create the metadata filters
|
||||
|
||||
|
||||
class FilterOperation(BaseModel):
|
||||
op: Literal["$gt", "$gte", "$eq", "$ne", "$lt", "$lte", "$in", "$nin"]
|
||||
value: str | list[str]
|
||||
|
||||
|
||||
class FilterQuery(BaseModel):
|
||||
field_name: Literal["created_date, tags"]
|
||||
op: FilterOperation
|
||||
|
||||
|
||||
class AndQuery(BaseModel):
|
||||
op: Literal["$and", "$or"]
|
||||
subqueries: list[FilterQuery]
|
||||
|
||||
|
||||
class GeneratedQuery(BaseModel):
|
||||
fields: list[str]
|
||||
extracted_metadata_fields: str
|
||||
|
||||
|
||||
PROMPT = """
|
||||
You are an information specialist that processes user queries. The user queries are all about
|
||||
a cat, Simba, and its records. The types of records are listed below. Using the query, extract the
|
||||
type of record the user is trying to query and the date range the user is trying to query.
|
||||
|
||||
|
||||
You have several operators at your disposal:
|
||||
- $gt: greater than
|
||||
- $gte: greater than or equal
|
||||
- $eq: equal
|
||||
- $ne: not equal
|
||||
- $lt: less than
|
||||
- $lte: less than or equal to
|
||||
- $in: in
|
||||
- $nin: not in
|
||||
|
||||
Logical operators:
|
||||
- $and, $or
|
||||
|
||||
### Example 1
|
||||
Query: "Who is Simba's current vet?"
|
||||
Metadata fields: "{"created_date, tags"}"
|
||||
Extracted metadata fields: {"$and": [{"created_date: {"$gt": "2025-01-01"}, "tags": {"$in": ["bill", "medical records", "aftercare"]}}]}
|
||||
|
||||
### Example 2
|
||||
Query: "How many teeth has Simba had removed?"
|
||||
Metadata fields: {"tags"}
|
||||
Extracted metadata fields: {"tags": "medical records"}
|
||||
|
||||
### Example 3
|
||||
Query: "How many times has Simba been to the vet this year?"
|
||||
Metadata fields: {"tags", "created_date"}
|
||||
Extracted metadata fields: {"$and": [{"created_date": {"gt": "2025-01-01"}, "tags": {"$in": ["bill"]}}]}
|
||||
|
||||
document_types:
|
||||
- aftercare
|
||||
- bill
|
||||
- insurance claim
|
||||
- medical records
|
||||
|
||||
Only return the extracted metadata fields. Make sure the extracted metadata fields are valid JSON
|
||||
"""
|
||||
|
||||
|
||||
class QueryGenerator:
|
||||
def __init__(self) -> None:
|
||||
pass
|
||||
|
||||
def get_query(self, input: str):
|
||||
response: ChatResponse = chat(
|
||||
model="gemma3n:e4b",
|
||||
messages=[
|
||||
{"role": "system", "content": PROMPT},
|
||||
{"role": "user", "content": input},
|
||||
],
|
||||
format=GeneratedQuery.model_json_schema(),
|
||||
)
|
||||
|
||||
print(
|
||||
json.loads(
|
||||
json.loads(response["message"]["content"])["extracted_metadata_fields"]
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
qg = QueryGenerator()
|
||||
qg.get_query("How old is Simba?")
|
||||
@@ -21,4 +21,4 @@ class PaperlessNGXService:
|
||||
|
||||
if __name__ == "__main__":
|
||||
pp = PaperlessNGXService()
|
||||
print(pp.get_data()[0].keys())
|
||||
pp.get_data()
|
||||
|
||||
Reference in New Issue
Block a user