Reducing startup time/cost

This commit is contained in:
2025-10-08 23:21:22 -04:00
parent 51b9932389
commit c978b1a255
3 changed files with 47 additions and 14 deletions

View File

@@ -8,6 +8,7 @@ from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
from dotenv import load_dotenv
from llm import LLMClient
USE_OPENAI = os.getenv("OPENAI_API_KEY") != None
@@ -91,9 +92,10 @@ class Chunker:
def __init__(self, collection) -> None:
self.collection = collection
self.llm_client = LLMClient()
def embedding_fx(self, inputs):
if USE_OPENAI:
if self.llm_client.PROVIDER == "openai":
openai_embedding_fx = OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"),
model_name="text-embedding-3-small",

15
llm.py
View File

@@ -16,7 +16,7 @@ class LLMClient:
self.ollama_client = Client(
host=os.getenv("OLLAMA_URL", "http://localhost:11434")
)
client.chat(
self.ollama_client.chat(
model="gemma3:4b", messages=[{"role": "system", "content": "test"}]
)
self.PROVIDER = "ollama"
@@ -35,9 +35,16 @@ class LLMClient:
if self.PROVIDER == "ollama":
response = self.ollama_client.chat(
model="gemma3:4b",
prompt=prompt,
messages=[
{
"role": "system",
"content": system_prompt,
},
{"role": "user", "content": prompt},
],
)
output = response["response"]
print(response)
output = response.message.content
elif self.PROVIDER == "openai":
response = self.openai_client.responses.create(
model="gpt-4o-mini",
@@ -51,6 +58,8 @@ class LLMClient:
)
output = response.output_text
return output
if __name__ == "__main__":
client = Client()

42
main.py
View File

@@ -1,6 +1,7 @@
import datetime
import logging
import os
import sqlite3
from typing import Any, Union
import argparse
@@ -15,6 +16,7 @@ from query import QueryGenerator
from cleaner import pdf_to_image, summarize_pdf_image
from llm import LLMClient
from dotenv import load_dotenv
load_dotenv()
@@ -25,7 +27,7 @@ USE_OPENAI = os.getenv("OPENAI_API_KEY") != None
ollama_client = ollama.Client(host=os.getenv("OLLAMA_URL", "http://localhost:11434"))
client = chromadb.PersistentClient(path=os.getenv("CHROMADB_PATH", ""))
simba_docs = client.get_or_create_collection(name="simba_docs2")
simba_docs = client.get_or_create_collection(name="simba_docs3")
feline_vet_lookup = client.get_or_create_collection(name="feline_vet_lookup")
parser = argparse.ArgumentParser(
@@ -76,15 +78,22 @@ def chunk_data(docs: list[dict[str, Union[str, Any]]], collection):
print(f"chunking {len(docs)} documents")
texts: list[str] = [doc["content"] for doc in docs]
for index, text in enumerate(texts):
metadata = {
"created_date": date_to_epoch(docs[index]["created_date"]),
"filename": docs[index]["original_file_name"],
}
chunker.chunk_document(
document=text,
metadata=metadata,
)
with sqlite3.connect("visited.db") as conn:
to_insert = []
c = conn.cursor()
for index, text in enumerate(texts):
metadata = {
"created_date": date_to_epoch(docs[index]["created_date"]),
"filename": docs[index]["original_file_name"],
}
chunker.chunk_document(
document=text,
metadata=metadata,
)
to_insert.append((docs[index]["id"],))
c.executemany("INSERT INTO indexed_documents (paperless_id) values (?)", to_insert)
def chunk_text(texts: list[str], collection):
@@ -160,6 +169,18 @@ def consult_simba_oracle(input: str):
collection=simba_docs,
)
def filter_indexed_files(docs):
with sqlite3.connect("visited.db") as conn:
c = conn.cursor()
c.execute("CREATE TABLE IF NOT EXISTS indexed_documents (id INTEGER PRIMARY KEY AUTOINCREMENT, paperless_id INTEGER)")
c.execute("SELECT paperless_id FROM indexed_documents")
rows = c.fetchall()
conn.commit()
visited = {row[0] for row in rows}
return [doc for doc in docs if doc["id"] not in visited]
if __name__ == "__main__":
args = parser.parse_args()
@@ -167,6 +188,7 @@ if __name__ == "__main__":
print("Fetching documents from Paperless-NGX")
ppngx = PaperlessNGXService()
docs = ppngx.get_data()
docs = filter_indexed_files(docs)
print(f"Fetched {len(docs)} documents")
#
print("Chunking documents now ...")