reorganization
This commit is contained in:
172
blueprints/conversation/__init__.py
Normal file
172
blueprints/conversation/__init__.py
Normal file
@@ -0,0 +1,172 @@
|
||||
import datetime
|
||||
|
||||
from quart import Blueprint, jsonify, request
|
||||
from quart_jwt_extended import (
|
||||
get_jwt_identity,
|
||||
jwt_refresh_token_required,
|
||||
)
|
||||
|
||||
import blueprints.users.models
|
||||
|
||||
from .agents import main_agent
|
||||
from .logic import (
|
||||
add_message_to_conversation,
|
||||
get_conversation_by_id,
|
||||
rename_conversation,
|
||||
)
|
||||
from .models import (
|
||||
Conversation,
|
||||
PydConversation,
|
||||
PydListConversation,
|
||||
)
|
||||
|
||||
conversation_blueprint = Blueprint(
|
||||
"conversation_api", __name__, url_prefix="/api/conversation"
|
||||
)
|
||||
|
||||
|
||||
@conversation_blueprint.post("/query")
|
||||
@jwt_refresh_token_required
|
||||
async def query():
|
||||
current_user_uuid = get_jwt_identity()
|
||||
user = await blueprints.users.models.User.get(id=current_user_uuid)
|
||||
data = await request.get_json()
|
||||
query = data.get("query")
|
||||
conversation_id = data.get("conversation_id")
|
||||
conversation = await get_conversation_by_id(conversation_id)
|
||||
await conversation.fetch_related("messages")
|
||||
await add_message_to_conversation(
|
||||
conversation=conversation,
|
||||
message=query,
|
||||
speaker="user",
|
||||
user=user,
|
||||
)
|
||||
|
||||
# Build conversation history from recent messages (last 10 for context)
|
||||
recent_messages = (
|
||||
conversation.messages[-10:]
|
||||
if len(conversation.messages) > 10
|
||||
else conversation.messages
|
||||
)
|
||||
|
||||
messages_payload = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": """You are a helpful cat assistant named Simba that understands veterinary terms. When there are questions to you specifically, they are referring to Simba the cat. Answer the user in as if you were a cat named Simba. Don't act too catlike. Be assertive.
|
||||
|
||||
SIMBA FACTS (as of January 2026):
|
||||
- Name: Simba
|
||||
- Species: Feline (Domestic Short Hair / American Short Hair)
|
||||
- Sex: Male, Neutered
|
||||
- Date of Birth: August 8, 2016 (approximately 9 years 5 months old)
|
||||
- Color: Orange
|
||||
- Current Weight: 16 lbs (as of 1/8/2026)
|
||||
- Owner: Ryan Chen
|
||||
- Location: Long Island City, NY
|
||||
- Veterinarian: Court Square Animal Hospital
|
||||
|
||||
Medical Conditions:
|
||||
- Hypertrophic Cardiomyopathy (HCM): Diagnosed 12/11/2025. Concentric left ventricular hypertrophy with no left atrial dilation. Grade II-III/VI systolic heart murmur. No cardiac medications currently needed. Must avoid Domitor, acepromazine, and ketamine during anesthesia.
|
||||
- Dental Issues: Prior extraction of teeth 307 and 407 due to resorption. Tooth 107 extracted on 1/8/2026. Early resorption lesions present on teeth 207, 309, and 409.
|
||||
|
||||
Recent Medical Events:
|
||||
- 1/8/2026: Dental cleaning and tooth 107 extraction. Prescribed Onsior for 3 days. Oravet sealant applied.
|
||||
- 12/11/2025: Echocardiogram confirming HCM diagnosis. Pre-op bloodwork was normal.
|
||||
- 12/1/2025: Visited for decreased appetite/nausea. Received subcutaneous fluids and Cerenia.
|
||||
|
||||
Diet & Lifestyle:
|
||||
- Diet: Hill's I/D wet and dry food
|
||||
- Supplements: Plaque Off
|
||||
- Indoor only cat, only pet in the household
|
||||
|
||||
Upcoming Appointments:
|
||||
- Rabies Vaccine: Due 2/19/2026
|
||||
- Routine Examination: Due 6/1/2026
|
||||
- FVRCP-3yr Vaccine: Due 10/2/2026
|
||||
|
||||
IMPORTANT: When users ask factual questions about Simba's health, medical history, veterinary visits, medications, weight, or any information that would be in documents, you MUST use the simba_search tool to retrieve accurate information before answering. Do not rely on general knowledge - always search the documents for factual questions.""",
|
||||
}
|
||||
]
|
||||
|
||||
# Add recent conversation history
|
||||
for msg in recent_messages[:-1]: # Exclude the message we just added
|
||||
role = "user" if msg.speaker == "user" else "assistant"
|
||||
messages_payload.append({"role": role, "content": msg.text})
|
||||
|
||||
# Add current query
|
||||
messages_payload.append({"role": "user", "content": query})
|
||||
|
||||
payload = {"messages": messages_payload}
|
||||
|
||||
response = await main_agent.ainvoke(payload)
|
||||
message = response.get("messages", [])[-1].content
|
||||
await add_message_to_conversation(
|
||||
conversation=conversation,
|
||||
message=message,
|
||||
speaker="simba",
|
||||
user=user,
|
||||
)
|
||||
return jsonify({"response": message})
|
||||
|
||||
|
||||
@conversation_blueprint.route("/<conversation_id>")
|
||||
@jwt_refresh_token_required
|
||||
async def get_conversation(conversation_id: str):
|
||||
conversation = await Conversation.get(id=conversation_id)
|
||||
current_user_uuid = get_jwt_identity()
|
||||
user = await blueprints.users.models.User.get(id=current_user_uuid)
|
||||
await conversation.fetch_related("messages")
|
||||
|
||||
# Manually serialize the conversation with messages
|
||||
messages = []
|
||||
for msg in conversation.messages:
|
||||
messages.append(
|
||||
{
|
||||
"id": str(msg.id),
|
||||
"text": msg.text,
|
||||
"speaker": msg.speaker.value,
|
||||
"created_at": msg.created_at.isoformat(),
|
||||
}
|
||||
)
|
||||
name = conversation.name
|
||||
if len(messages) > 8 and "datetime" in name.lower():
|
||||
name = await rename_conversation(
|
||||
user=user,
|
||||
conversation=conversation,
|
||||
)
|
||||
print(name)
|
||||
|
||||
return jsonify(
|
||||
{
|
||||
"id": str(conversation.id),
|
||||
"name": name,
|
||||
"messages": messages,
|
||||
"created_at": conversation.created_at.isoformat(),
|
||||
"updated_at": conversation.updated_at.isoformat(),
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
@conversation_blueprint.post("/")
|
||||
@jwt_refresh_token_required
|
||||
async def create_conversation():
|
||||
user_uuid = get_jwt_identity()
|
||||
user = await blueprints.users.models.User.get(id=user_uuid)
|
||||
conversation = await Conversation.create(
|
||||
name=f"{user.username} {datetime.datetime.now().timestamp}",
|
||||
user=user,
|
||||
)
|
||||
|
||||
serialized_conversation = await PydConversation.from_tortoise_orm(conversation)
|
||||
return jsonify(serialized_conversation.model_dump())
|
||||
|
||||
|
||||
@conversation_blueprint.get("/")
|
||||
@jwt_refresh_token_required
|
||||
async def get_all_conversations():
|
||||
user_uuid = get_jwt_identity()
|
||||
user = await blueprints.users.models.User.get(id=user_uuid)
|
||||
conversations = Conversation.filter(user=user)
|
||||
serialized_conversations = await PydListConversation.from_queryset(conversations)
|
||||
|
||||
return jsonify(serialized_conversations.model_dump())
|
||||
78
blueprints/conversation/agents.py
Normal file
78
blueprints/conversation/agents.py
Normal file
@@ -0,0 +1,78 @@
|
||||
import os
|
||||
from typing import cast
|
||||
|
||||
from langchain.agents import create_agent
|
||||
from langchain.chat_models import BaseChatModel
|
||||
from langchain.tools import tool
|
||||
from langchain_ollama import ChatOllama
|
||||
from langchain_openai import ChatOpenAI
|
||||
from tavily import AsyncTavilyClient
|
||||
|
||||
from blueprints.rag.logic import query_vector_store
|
||||
|
||||
openai_gpt_5_mini = ChatOpenAI(model="gpt-5-mini")
|
||||
ollama_deepseek = ChatOllama(model="llama3.1:8b", base_url=os.getenv("OLLAMA_URL"))
|
||||
model_with_fallback = cast(
|
||||
BaseChatModel, ollama_deepseek.with_fallbacks([openai_gpt_5_mini])
|
||||
)
|
||||
client = AsyncTavilyClient(os.getenv("TAVILY_KEY"), "")
|
||||
|
||||
|
||||
@tool
|
||||
async def web_search(query: str) -> str:
|
||||
"""Search the web for current information using Tavily.
|
||||
|
||||
Use this tool when you need to:
|
||||
- Find current information not in the knowledge base
|
||||
- Look up recent events, news, or updates
|
||||
- Verify facts or get additional context
|
||||
- Search for information outside of Simba's documents
|
||||
|
||||
Args:
|
||||
query: The search query to look up on the web
|
||||
|
||||
Returns:
|
||||
Search results from the web with titles, content, and source URLs
|
||||
"""
|
||||
response = await client.search(query=query, search_depth="basic")
|
||||
results = response.get("results", [])
|
||||
|
||||
if not results:
|
||||
return "No results found for the query."
|
||||
|
||||
formatted = "\n\n".join(
|
||||
[
|
||||
f"**{result['title']}**\n{result['content']}\nSource: {result['url']}"
|
||||
for result in results[:5]
|
||||
]
|
||||
)
|
||||
return formatted
|
||||
|
||||
|
||||
@tool(response_format="content_and_artifact")
|
||||
async def simba_search(query: str):
|
||||
"""Search through Simba's medical records, veterinary documents, and personal information.
|
||||
|
||||
Use this tool whenever the user asks questions about:
|
||||
- Simba's health history, medical records, or veterinary visits
|
||||
- Medications, treatments, or diagnoses
|
||||
- Weight, diet, or physical characteristics over time
|
||||
- Veterinary recommendations or advice
|
||||
- Ryan's (the owner's) information related to Simba
|
||||
- Any factual information that would be found in documents
|
||||
|
||||
Args:
|
||||
query: The user's question or information need about Simba
|
||||
|
||||
Returns:
|
||||
Relevant information from Simba's documents
|
||||
"""
|
||||
print(f"[SIMBA SEARCH] Tool called with query: {query}")
|
||||
serialized, docs = await query_vector_store(query=query)
|
||||
print(f"[SIMBA SEARCH] Found {len(docs)} documents")
|
||||
print(f"[SIMBA SEARCH] Serialized result length: {len(serialized)}")
|
||||
print(f"[SIMBA SEARCH] First 200 chars: {serialized[:200]}")
|
||||
return serialized, docs
|
||||
|
||||
|
||||
main_agent = create_agent(model=model_with_fallback, tools=[simba_search, web_search])
|
||||
80
blueprints/conversation/logic.py
Normal file
80
blueprints/conversation/logic.py
Normal file
@@ -0,0 +1,80 @@
|
||||
import tortoise.exceptions
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
import blueprints.users.models
|
||||
|
||||
from .models import Conversation, ConversationMessage, RenameConversationOutputSchema
|
||||
|
||||
|
||||
async def create_conversation(name: str = "") -> Conversation:
|
||||
conversation = await Conversation.create(name=name)
|
||||
return conversation
|
||||
|
||||
|
||||
async def add_message_to_conversation(
|
||||
conversation: Conversation,
|
||||
message: str,
|
||||
speaker: str,
|
||||
user: blueprints.users.models.User,
|
||||
) -> ConversationMessage:
|
||||
print(conversation, message, speaker)
|
||||
message = await ConversationMessage.create(
|
||||
text=message,
|
||||
speaker=speaker,
|
||||
conversation=conversation,
|
||||
)
|
||||
|
||||
return message
|
||||
|
||||
|
||||
async def get_the_only_conversation() -> Conversation:
|
||||
try:
|
||||
conversation = await Conversation.all().first()
|
||||
if conversation is None:
|
||||
conversation = await Conversation.create(name="simba_chat")
|
||||
except Exception as _e:
|
||||
conversation = await Conversation.create(name="simba_chat")
|
||||
|
||||
return conversation
|
||||
|
||||
|
||||
async def get_conversation_for_user(user: blueprints.users.models.User) -> Conversation:
|
||||
try:
|
||||
return await Conversation.get(user=user)
|
||||
except tortoise.exceptions.DoesNotExist:
|
||||
await Conversation.get_or_create(name=f"{user.username}'s chat", user=user)
|
||||
|
||||
return await Conversation.get(user=user)
|
||||
|
||||
|
||||
async def get_conversation_by_id(id: str) -> Conversation:
|
||||
return await Conversation.get(id=id)
|
||||
|
||||
|
||||
async def get_conversation_transcript(
|
||||
user: blueprints.users.models.User, conversation: Conversation
|
||||
) -> str:
|
||||
messages = []
|
||||
for message in conversation.messages:
|
||||
messages.append(f"{message.speaker} at {message.created_at}: {message.text}")
|
||||
|
||||
return "\n".join(messages)
|
||||
|
||||
|
||||
async def rename_conversation(
|
||||
user: blueprints.users.models.User,
|
||||
conversation: Conversation,
|
||||
) -> str:
|
||||
messages: str = await get_conversation_transcript(
|
||||
user=user, conversation=conversation
|
||||
)
|
||||
|
||||
llm = ChatOpenAI(model="gpt-4o-mini")
|
||||
structured_llm = llm.with_structured_output(RenameConversationOutputSchema)
|
||||
|
||||
prompt = f"Summarize the following conversation into a sassy one-liner title:\n\n{messages}"
|
||||
response = structured_llm.invoke(prompt)
|
||||
new_name: str = response.get("title", "")
|
||||
conversation.name = new_name
|
||||
await conversation.save()
|
||||
return new_name
|
||||
61
blueprints/conversation/models.py
Normal file
61
blueprints/conversation/models.py
Normal file
@@ -0,0 +1,61 @@
|
||||
import enum
|
||||
from dataclasses import dataclass
|
||||
|
||||
from tortoise import fields
|
||||
from tortoise.contrib.pydantic import (
|
||||
pydantic_model_creator,
|
||||
pydantic_queryset_creator,
|
||||
)
|
||||
from tortoise.models import Model
|
||||
|
||||
|
||||
@dataclass
|
||||
class RenameConversationOutputSchema:
|
||||
title: str
|
||||
justification: str
|
||||
|
||||
|
||||
class Speaker(enum.Enum):
|
||||
USER = "user"
|
||||
SIMBA = "simba"
|
||||
|
||||
|
||||
class Conversation(Model):
|
||||
id = fields.UUIDField(primary_key=True)
|
||||
name = fields.CharField(max_length=255)
|
||||
created_at = fields.DatetimeField(auto_now_add=True)
|
||||
updated_at = fields.DatetimeField(auto_now=True)
|
||||
user: fields.ForeignKeyRelation = fields.ForeignKeyField(
|
||||
"models.User", related_name="conversations", null=True
|
||||
)
|
||||
|
||||
class Meta:
|
||||
table = "conversations"
|
||||
|
||||
|
||||
class ConversationMessage(Model):
|
||||
id = fields.UUIDField(primary_key=True)
|
||||
text = fields.TextField()
|
||||
conversation = fields.ForeignKeyField(
|
||||
"models.Conversation", related_name="messages"
|
||||
)
|
||||
created_at = fields.DatetimeField(auto_now_add=True)
|
||||
speaker = fields.CharEnumField(enum_type=Speaker, max_length=10)
|
||||
|
||||
class Meta:
|
||||
table = "conversation_messages"
|
||||
|
||||
|
||||
PydConversationMessage = pydantic_model_creator(ConversationMessage)
|
||||
PydConversation = pydantic_model_creator(
|
||||
Conversation, name="Conversation", allow_cycles=True, exclude=("user",)
|
||||
)
|
||||
PydConversationWithMessages = pydantic_model_creator(
|
||||
Conversation,
|
||||
name="ConversationWithMessages",
|
||||
allow_cycles=True,
|
||||
exclude=("user",),
|
||||
include=("messages",),
|
||||
)
|
||||
PydListConversation = pydantic_queryset_creator(Conversation)
|
||||
PydListConversationMessage = pydantic_queryset_creator(ConversationMessage)
|
||||
Reference in New Issue
Block a user