reorganization

This commit is contained in:
2026-01-31 17:13:27 -05:00
parent 1fd2e860b2
commit ad39904dda
87 changed files with 1019 additions and 237 deletions

1
blueprints/__init__.py Normal file
View File

@@ -0,0 +1 @@
# Blueprints package

View File

@@ -0,0 +1,172 @@
import datetime
from quart import Blueprint, jsonify, request
from quart_jwt_extended import (
get_jwt_identity,
jwt_refresh_token_required,
)
import blueprints.users.models
from .agents import main_agent
from .logic import (
add_message_to_conversation,
get_conversation_by_id,
rename_conversation,
)
from .models import (
Conversation,
PydConversation,
PydListConversation,
)
conversation_blueprint = Blueprint(
"conversation_api", __name__, url_prefix="/api/conversation"
)
@conversation_blueprint.post("/query")
@jwt_refresh_token_required
async def query():
current_user_uuid = get_jwt_identity()
user = await blueprints.users.models.User.get(id=current_user_uuid)
data = await request.get_json()
query = data.get("query")
conversation_id = data.get("conversation_id")
conversation = await get_conversation_by_id(conversation_id)
await conversation.fetch_related("messages")
await add_message_to_conversation(
conversation=conversation,
message=query,
speaker="user",
user=user,
)
# Build conversation history from recent messages (last 10 for context)
recent_messages = (
conversation.messages[-10:]
if len(conversation.messages) > 10
else conversation.messages
)
messages_payload = [
{
"role": "system",
"content": """You are a helpful cat assistant named Simba that understands veterinary terms. When there are questions to you specifically, they are referring to Simba the cat. Answer the user in as if you were a cat named Simba. Don't act too catlike. Be assertive.
SIMBA FACTS (as of January 2026):
- Name: Simba
- Species: Feline (Domestic Short Hair / American Short Hair)
- Sex: Male, Neutered
- Date of Birth: August 8, 2016 (approximately 9 years 5 months old)
- Color: Orange
- Current Weight: 16 lbs (as of 1/8/2026)
- Owner: Ryan Chen
- Location: Long Island City, NY
- Veterinarian: Court Square Animal Hospital
Medical Conditions:
- Hypertrophic Cardiomyopathy (HCM): Diagnosed 12/11/2025. Concentric left ventricular hypertrophy with no left atrial dilation. Grade II-III/VI systolic heart murmur. No cardiac medications currently needed. Must avoid Domitor, acepromazine, and ketamine during anesthesia.
- Dental Issues: Prior extraction of teeth 307 and 407 due to resorption. Tooth 107 extracted on 1/8/2026. Early resorption lesions present on teeth 207, 309, and 409.
Recent Medical Events:
- 1/8/2026: Dental cleaning and tooth 107 extraction. Prescribed Onsior for 3 days. Oravet sealant applied.
- 12/11/2025: Echocardiogram confirming HCM diagnosis. Pre-op bloodwork was normal.
- 12/1/2025: Visited for decreased appetite/nausea. Received subcutaneous fluids and Cerenia.
Diet & Lifestyle:
- Diet: Hill's I/D wet and dry food
- Supplements: Plaque Off
- Indoor only cat, only pet in the household
Upcoming Appointments:
- Rabies Vaccine: Due 2/19/2026
- Routine Examination: Due 6/1/2026
- FVRCP-3yr Vaccine: Due 10/2/2026
IMPORTANT: When users ask factual questions about Simba's health, medical history, veterinary visits, medications, weight, or any information that would be in documents, you MUST use the simba_search tool to retrieve accurate information before answering. Do not rely on general knowledge - always search the documents for factual questions.""",
}
]
# Add recent conversation history
for msg in recent_messages[:-1]: # Exclude the message we just added
role = "user" if msg.speaker == "user" else "assistant"
messages_payload.append({"role": role, "content": msg.text})
# Add current query
messages_payload.append({"role": "user", "content": query})
payload = {"messages": messages_payload}
response = await main_agent.ainvoke(payload)
message = response.get("messages", [])[-1].content
await add_message_to_conversation(
conversation=conversation,
message=message,
speaker="simba",
user=user,
)
return jsonify({"response": message})
@conversation_blueprint.route("/<conversation_id>")
@jwt_refresh_token_required
async def get_conversation(conversation_id: str):
conversation = await Conversation.get(id=conversation_id)
current_user_uuid = get_jwt_identity()
user = await blueprints.users.models.User.get(id=current_user_uuid)
await conversation.fetch_related("messages")
# Manually serialize the conversation with messages
messages = []
for msg in conversation.messages:
messages.append(
{
"id": str(msg.id),
"text": msg.text,
"speaker": msg.speaker.value,
"created_at": msg.created_at.isoformat(),
}
)
name = conversation.name
if len(messages) > 8 and "datetime" in name.lower():
name = await rename_conversation(
user=user,
conversation=conversation,
)
print(name)
return jsonify(
{
"id": str(conversation.id),
"name": name,
"messages": messages,
"created_at": conversation.created_at.isoformat(),
"updated_at": conversation.updated_at.isoformat(),
}
)
@conversation_blueprint.post("/")
@jwt_refresh_token_required
async def create_conversation():
user_uuid = get_jwt_identity()
user = await blueprints.users.models.User.get(id=user_uuid)
conversation = await Conversation.create(
name=f"{user.username} {datetime.datetime.now().timestamp}",
user=user,
)
serialized_conversation = await PydConversation.from_tortoise_orm(conversation)
return jsonify(serialized_conversation.model_dump())
@conversation_blueprint.get("/")
@jwt_refresh_token_required
async def get_all_conversations():
user_uuid = get_jwt_identity()
user = await blueprints.users.models.User.get(id=user_uuid)
conversations = Conversation.filter(user=user)
serialized_conversations = await PydListConversation.from_queryset(conversations)
return jsonify(serialized_conversations.model_dump())

View File

@@ -0,0 +1,78 @@
import os
from typing import cast
from langchain.agents import create_agent
from langchain.chat_models import BaseChatModel
from langchain.tools import tool
from langchain_ollama import ChatOllama
from langchain_openai import ChatOpenAI
from tavily import AsyncTavilyClient
from blueprints.rag.logic import query_vector_store
openai_gpt_5_mini = ChatOpenAI(model="gpt-5-mini")
ollama_deepseek = ChatOllama(model="llama3.1:8b", base_url=os.getenv("OLLAMA_URL"))
model_with_fallback = cast(
BaseChatModel, ollama_deepseek.with_fallbacks([openai_gpt_5_mini])
)
client = AsyncTavilyClient(os.getenv("TAVILY_KEY"), "")
@tool
async def web_search(query: str) -> str:
"""Search the web for current information using Tavily.
Use this tool when you need to:
- Find current information not in the knowledge base
- Look up recent events, news, or updates
- Verify facts or get additional context
- Search for information outside of Simba's documents
Args:
query: The search query to look up on the web
Returns:
Search results from the web with titles, content, and source URLs
"""
response = await client.search(query=query, search_depth="basic")
results = response.get("results", [])
if not results:
return "No results found for the query."
formatted = "\n\n".join(
[
f"**{result['title']}**\n{result['content']}\nSource: {result['url']}"
for result in results[:5]
]
)
return formatted
@tool(response_format="content_and_artifact")
async def simba_search(query: str):
"""Search through Simba's medical records, veterinary documents, and personal information.
Use this tool whenever the user asks questions about:
- Simba's health history, medical records, or veterinary visits
- Medications, treatments, or diagnoses
- Weight, diet, or physical characteristics over time
- Veterinary recommendations or advice
- Ryan's (the owner's) information related to Simba
- Any factual information that would be found in documents
Args:
query: The user's question or information need about Simba
Returns:
Relevant information from Simba's documents
"""
print(f"[SIMBA SEARCH] Tool called with query: {query}")
serialized, docs = await query_vector_store(query=query)
print(f"[SIMBA SEARCH] Found {len(docs)} documents")
print(f"[SIMBA SEARCH] Serialized result length: {len(serialized)}")
print(f"[SIMBA SEARCH] First 200 chars: {serialized[:200]}")
return serialized, docs
main_agent = create_agent(model=model_with_fallback, tools=[simba_search, web_search])

View File

@@ -0,0 +1,80 @@
import tortoise.exceptions
from langchain_openai import ChatOpenAI
import blueprints.users.models
from .models import Conversation, ConversationMessage, RenameConversationOutputSchema
async def create_conversation(name: str = "") -> Conversation:
conversation = await Conversation.create(name=name)
return conversation
async def add_message_to_conversation(
conversation: Conversation,
message: str,
speaker: str,
user: blueprints.users.models.User,
) -> ConversationMessage:
print(conversation, message, speaker)
message = await ConversationMessage.create(
text=message,
speaker=speaker,
conversation=conversation,
)
return message
async def get_the_only_conversation() -> Conversation:
try:
conversation = await Conversation.all().first()
if conversation is None:
conversation = await Conversation.create(name="simba_chat")
except Exception as _e:
conversation = await Conversation.create(name="simba_chat")
return conversation
async def get_conversation_for_user(user: blueprints.users.models.User) -> Conversation:
try:
return await Conversation.get(user=user)
except tortoise.exceptions.DoesNotExist:
await Conversation.get_or_create(name=f"{user.username}'s chat", user=user)
return await Conversation.get(user=user)
async def get_conversation_by_id(id: str) -> Conversation:
return await Conversation.get(id=id)
async def get_conversation_transcript(
user: blueprints.users.models.User, conversation: Conversation
) -> str:
messages = []
for message in conversation.messages:
messages.append(f"{message.speaker} at {message.created_at}: {message.text}")
return "\n".join(messages)
async def rename_conversation(
user: blueprints.users.models.User,
conversation: Conversation,
) -> str:
messages: str = await get_conversation_transcript(
user=user, conversation=conversation
)
llm = ChatOpenAI(model="gpt-4o-mini")
structured_llm = llm.with_structured_output(RenameConversationOutputSchema)
prompt = f"Summarize the following conversation into a sassy one-liner title:\n\n{messages}"
response = structured_llm.invoke(prompt)
new_name: str = response.get("title", "")
conversation.name = new_name
await conversation.save()
return new_name

View File

@@ -0,0 +1,61 @@
import enum
from dataclasses import dataclass
from tortoise import fields
from tortoise.contrib.pydantic import (
pydantic_model_creator,
pydantic_queryset_creator,
)
from tortoise.models import Model
@dataclass
class RenameConversationOutputSchema:
title: str
justification: str
class Speaker(enum.Enum):
USER = "user"
SIMBA = "simba"
class Conversation(Model):
id = fields.UUIDField(primary_key=True)
name = fields.CharField(max_length=255)
created_at = fields.DatetimeField(auto_now_add=True)
updated_at = fields.DatetimeField(auto_now=True)
user: fields.ForeignKeyRelation = fields.ForeignKeyField(
"models.User", related_name="conversations", null=True
)
class Meta:
table = "conversations"
class ConversationMessage(Model):
id = fields.UUIDField(primary_key=True)
text = fields.TextField()
conversation = fields.ForeignKeyField(
"models.Conversation", related_name="messages"
)
created_at = fields.DatetimeField(auto_now_add=True)
speaker = fields.CharEnumField(enum_type=Speaker, max_length=10)
class Meta:
table = "conversation_messages"
PydConversationMessage = pydantic_model_creator(ConversationMessage)
PydConversation = pydantic_model_creator(
Conversation, name="Conversation", allow_cycles=True, exclude=("user",)
)
PydConversationWithMessages = pydantic_model_creator(
Conversation,
name="ConversationWithMessages",
allow_cycles=True,
exclude=("user",),
include=("messages",),
)
PydListConversation = pydantic_queryset_creator(Conversation)
PydListConversationMessage = pydantic_queryset_creator(ConversationMessage)

View File

@@ -0,0 +1,47 @@
from quart import Blueprint, jsonify
from quart_jwt_extended import jwt_refresh_token_required
from .logic import get_vector_store_stats, index_documents, vector_store
from blueprints.users.decorators import admin_required
rag_blueprint = Blueprint("rag_api", __name__, url_prefix="/api/rag")
@rag_blueprint.get("/stats")
@jwt_refresh_token_required
async def get_stats():
"""Get vector store statistics."""
stats = get_vector_store_stats()
return jsonify(stats)
@rag_blueprint.post("/index")
@admin_required
async def trigger_index():
"""Trigger indexing of documents from Paperless-NGX. Admin only."""
try:
await index_documents()
stats = get_vector_store_stats()
return jsonify({"status": "success", "stats": stats})
except Exception as e:
return jsonify({"status": "error", "message": str(e)}), 500
@rag_blueprint.post("/reindex")
@admin_required
async def trigger_reindex():
"""Clear and reindex all documents. Admin only."""
try:
# Clear existing documents
collection = vector_store._collection
all_docs = collection.get()
if all_docs["ids"]:
collection.delete(ids=all_docs["ids"])
# Reindex
await index_documents()
stats = get_vector_store_stats()
return jsonify({"status": "success", "stats": stats})
except Exception as e:
return jsonify({"status": "error", "message": str(e)}), 500

View File

@@ -0,0 +1,75 @@
import os
import tempfile
import httpx
class PaperlessNGXService:
def __init__(self):
self.base_url = os.getenv("BASE_URL")
self.token = os.getenv("PAPERLESS_TOKEN")
self.url = f"http://{os.getenv('BASE_URL')}/api/documents/?tags__id=8"
self.headers = {"Authorization": f"Token {os.getenv('PAPERLESS_TOKEN')}"}
def get_data(self):
print(f"Getting data from: {self.url}")
r = httpx.get(self.url, headers=self.headers)
results = r.json()["results"]
nextLink = r.json().get("next")
while nextLink:
r = httpx.get(nextLink, headers=self.headers)
results += r.json()["results"]
nextLink = r.json().get("next")
return results
def get_doc_by_id(self, doc_id: int):
url = f"http://{os.getenv('BASE_URL')}/api/documents/{doc_id}/"
r = httpx.get(url, headers=self.headers)
return r.json()
def download_pdf_from_id(self, id: int) -> str:
download_url = f"http://{os.getenv('BASE_URL')}/api/documents/{id}/download/"
response = httpx.get(
download_url, headers=self.headers, follow_redirects=True, timeout=30
)
response.raise_for_status()
# Use a temporary file for the downloaded PDF
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
temp_file.write(response.content)
temp_file.close()
temp_pdf_path = temp_file.name
pdf_to_process = temp_pdf_path
return pdf_to_process
def upload_cleaned_content(self, document_id, data):
PUTS_URL = f"http://{os.getenv('BASE_URL')}/api/documents/{document_id}/"
r = httpx.put(PUTS_URL, headers=self.headers, data=data)
r.raise_for_status()
def upload_description(self, description_filepath, file, title, exif_date: str):
POST_URL = f"http://{os.getenv('BASE_URL')}/api/documents/post_document/"
files = {"document": ("description_filepath", file, "application/txt")}
data = {
"title": title,
"create": exif_date,
"document_type": 3,
"tags": [7],
}
r = httpx.post(POST_URL, headers=self.headers, data=data, files=files)
r.raise_for_status()
def get_tags(self):
GET_URL = f"http://{os.getenv('BASE_URL')}/api/tags/"
r = httpx.get(GET_URL, headers=self.headers)
data = r.json()
return {tag["id"]: tag["name"] for tag in data["results"]}
def get_doctypes(self):
GET_URL = f"http://{os.getenv('BASE_URL')}/api/document_types/"
r = httpx.get(GET_URL, headers=self.headers)
data = r.json()
return {doctype["id"]: doctype["name"] for doctype in data["results"]}

101
blueprints/rag/logic.py Normal file
View File

@@ -0,0 +1,101 @@
import datetime
import os
from langchain_chroma import Chroma
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from .fetchers import PaperlessNGXService
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vector_store = Chroma(
collection_name="simba_docs",
embedding_function=embeddings,
persist_directory=os.getenv("CHROMADB_PATH", ""),
)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, # chunk size (characters)
chunk_overlap=200, # chunk overlap (characters)
add_start_index=True, # track index in original document
)
def date_to_epoch(date_str: str) -> float:
split_date = date_str.split("-")
date = datetime.datetime(
int(split_date[0]),
int(split_date[1]),
int(split_date[2]),
0,
0,
0,
)
return date.timestamp()
async def fetch_documents_from_paperless_ngx() -> list[Document]:
ppngx = PaperlessNGXService()
data = ppngx.get_data()
doctypes = ppngx.get_doctypes()
documents = []
for doc in data:
metadata = {
"created_date": date_to_epoch(doc["created_date"]),
"filename": doc["original_file_name"],
"document_type": doctypes.get(doc["document_type"], ""),
}
documents.append(Document(page_content=doc["content"], metadata=metadata))
return documents
async def index_documents():
documents = await fetch_documents_from_paperless_ngx()
splits = text_splitter.split_documents(documents)
await vector_store.aadd_documents(documents=splits)
async def query_vector_store(query: str):
retrieved_docs = await vector_store.asimilarity_search(query, k=2)
serialized = "\n\n".join(
(f"Source: {doc.metadata}\nContent: {doc.page_content}")
for doc in retrieved_docs
)
return serialized, retrieved_docs
def get_vector_store_stats():
"""Get statistics about the vector store."""
collection = vector_store._collection
count = collection.count()
return {
"total_documents": count,
"collection_name": collection.name,
}
def list_all_documents(limit: int = 10):
"""List documents in the vector store with their metadata."""
collection = vector_store._collection
results = collection.get(limit=limit, include=["metadatas", "documents"])
documents = []
for i, doc_id in enumerate(results["ids"]):
documents.append(
{
"id": doc_id,
"metadata": results["metadatas"][i]
if results.get("metadatas")
else None,
"content_preview": results["documents"][i][:200]
if results.get("documents")
else None,
}
)
return documents

0
blueprints/rag/models.py Normal file
View File

View File

@@ -0,0 +1,188 @@
from quart import Blueprint, jsonify, request
from quart_jwt_extended import (
create_access_token,
create_refresh_token,
jwt_refresh_token_required,
get_jwt_identity,
)
from .models import User
from .oidc_service import OIDCUserService
from config.oidc_config import oidc_config
import secrets
import httpx
from urllib.parse import urlencode
import hashlib
import base64
user_blueprint = Blueprint("user_api", __name__, url_prefix="/api/user")
# In-memory storage for OIDC state/PKCE (production: use Redis or database)
# Format: {state: {"pkce_verifier": str, "redirect_after_login": str}}
_oidc_sessions = {}
@user_blueprint.route("/oidc/login", methods=["GET"])
async def oidc_login():
"""
Initiate OIDC login flow
Generates PKCE parameters and redirects to Authelia
"""
if not oidc_config.validate_config():
return jsonify({"error": "OIDC not configured"}), 500
try:
# Generate PKCE parameters
code_verifier = secrets.token_urlsafe(64)
# For PKCE, we need code_challenge = BASE64URL(SHA256(code_verifier))
code_challenge = (
base64.urlsafe_b64encode(hashlib.sha256(code_verifier.encode()).digest())
.decode()
.rstrip("=")
)
# Generate state for CSRF protection
state = secrets.token_urlsafe(32)
# Store PKCE verifier and state for callback validation
_oidc_sessions[state] = {
"pkce_verifier": code_verifier,
"redirect_after_login": request.args.get("redirect", "/"),
}
# Get authorization endpoint from discovery
discovery = await oidc_config.get_discovery_document()
auth_endpoint = discovery.get("authorization_endpoint")
# Build authorization URL
params = {
"client_id": oidc_config.client_id,
"response_type": "code",
"redirect_uri": oidc_config.redirect_uri,
"scope": "openid email profile groups",
"state": state,
"code_challenge": code_challenge,
"code_challenge_method": "S256",
}
auth_url = f"{auth_endpoint}?{urlencode(params)}"
return jsonify({"auth_url": auth_url})
except Exception as e:
return jsonify({"error": f"OIDC login failed: {str(e)}"}), 500
@user_blueprint.route("/oidc/callback", methods=["GET"])
async def oidc_callback():
"""
Handle OIDC callback from Authelia
Exchanges authorization code for tokens, verifies ID token, and creates/updates user
"""
# Get authorization code and state from callback
code = request.args.get("code")
state = request.args.get("state")
error = request.args.get("error")
if error:
return jsonify({"error": f"OIDC error: {error}"}), 400
if not code or not state:
return jsonify({"error": "Missing code or state"}), 400
# Validate state and retrieve PKCE verifier
session = _oidc_sessions.pop(state, None)
if not session:
return jsonify({"error": "Invalid or expired state"}), 400
pkce_verifier = session["pkce_verifier"]
# Exchange authorization code for tokens
discovery = await oidc_config.get_discovery_document()
token_endpoint = discovery.get("token_endpoint")
token_data = {
"grant_type": "authorization_code",
"code": code,
"redirect_uri": oidc_config.redirect_uri,
"client_id": oidc_config.client_id,
"client_secret": oidc_config.client_secret,
"code_verifier": pkce_verifier,
}
# Use client_secret_post method (credentials in POST body)
async with httpx.AsyncClient() as client:
token_response = await client.post(token_endpoint, data=token_data)
if token_response.status_code != 200:
return jsonify(
{"error": f"Failed to exchange code for token: {token_response.text}"}
), 400
tokens = token_response.json()
id_token = tokens.get("id_token")
if not id_token:
return jsonify({"error": "No ID token received"}), 400
# Verify ID token
try:
claims = await oidc_config.verify_id_token(id_token)
except Exception as e:
return jsonify({"error": f"ID token verification failed: {str(e)}"}), 400
# Get or create user from OIDC claims
user = await OIDCUserService.get_or_create_user_from_oidc(claims)
# Issue backend JWT tokens
access_token = create_access_token(identity=str(user.id))
refresh_token = create_refresh_token(identity=str(user.id))
# Return tokens to frontend
# Frontend will handle storing these and redirecting
return jsonify(
access_token=access_token,
refresh_token=refresh_token,
user={
"id": str(user.id),
"username": user.username,
"email": user.email,
"groups": user.ldap_groups,
"is_admin": user.is_admin(),
},
)
@user_blueprint.route("/refresh", methods=["POST"])
@jwt_refresh_token_required
async def refresh():
"""Refresh access token (unchanged from original)"""
user_id = get_jwt_identity()
new_token = create_access_token(identity=user_id)
return jsonify(access_token=new_token)
# Legacy username/password login - kept for backward compatibility during migration
@user_blueprint.route("/login", methods=["POST"])
async def login():
"""
Legacy username/password login
This can be removed after full OIDC migration is complete
"""
data = await request.get_json()
username = data.get("username")
password = data.get("password")
user = await User.filter(username=username).first()
if not user or not user.verify_password(password):
return jsonify({"msg": "Invalid credentials"}), 401
access_token = create_access_token(identity=str(user.id))
refresh_token = create_refresh_token(identity=str(user.id))
return jsonify(
access_token=access_token,
refresh_token=refresh_token,
user={"id": str(user.id), "username": user.username},
)

View File

@@ -0,0 +1,26 @@
"""
Authentication decorators for role-based access control.
"""
from functools import wraps
from quart import jsonify
from quart_jwt_extended import jwt_refresh_token_required, get_jwt_identity
from .models import User
def admin_required(fn):
"""
Decorator that requires the user to be an admin (member of lldap_admin group).
Must be used on async route handlers.
"""
@wraps(fn)
@jwt_refresh_token_required
async def wrapper(*args, **kwargs):
user_id = get_jwt_identity()
user = await User.get_or_none(id=user_id)
if not user or not user.is_admin():
return jsonify({"error": "Admin access required"}), 403
return await fn(*args, **kwargs)
return wrapper

View File

@@ -0,0 +1,46 @@
from tortoise.models import Model
from tortoise import fields
import bcrypt
class User(Model):
id = fields.UUIDField(primary_key=True)
username = fields.CharField(max_length=255)
password = fields.BinaryField(null=True) # Hashed - nullable for OIDC users
email = fields.CharField(max_length=100, unique=True)
# OIDC fields
oidc_subject = fields.CharField(
max_length=255, unique=True, null=True, index=True
) # "sub" claim from OIDC
auth_provider = fields.CharField(
max_length=50, default="local"
) # "local" or "oidc"
ldap_groups = fields.JSONField(default=[]) # LDAP groups from OIDC claims
created_at = fields.DatetimeField(auto_now_add=True)
updated_at = fields.DatetimeField(auto_now=True)
class Meta:
table = "users"
def has_group(self, group: str) -> bool:
"""Check if user belongs to a specific LDAP group."""
return group in (self.ldap_groups or [])
def is_admin(self) -> bool:
"""Check if user is an admin (member of lldap_admin group)."""
return self.has_group("lldap_admin")
def set_password(self, plain_password: str):
self.password = bcrypt.hashpw(
plain_password.encode("utf-8"),
bcrypt.gensalt(),
)
def verify_password(self, plain_password: str):
if not self.password:
return False
return bcrypt.checkpw(plain_password.encode("utf-8"), self.password)

View File

@@ -0,0 +1,81 @@
"""
OIDC User Management Service
"""
from typing import Dict, Any, Optional
from uuid import uuid4
from .models import User
class OIDCUserService:
"""Service for managing OIDC user authentication and provisioning"""
@staticmethod
async def get_or_create_user_from_oidc(claims: Dict[str, Any]) -> User:
"""
Get existing user by OIDC subject, or create new user from OIDC claims
Args:
claims: Decoded OIDC ID token claims
Returns:
User object (existing or newly created)
"""
oidc_subject = claims.get("sub")
if not oidc_subject:
raise ValueError("No 'sub' claim in ID token")
# Try to find existing user by OIDC subject
user = await User.filter(oidc_subject=oidc_subject).first()
if user:
# Update user info from latest claims (optional)
user.email = claims.get("email", user.email)
user.username = (
claims.get("preferred_username") or claims.get("name") or user.username
)
# Update LDAP groups from claims
user.ldap_groups = claims.get("groups", [])
await user.save()
return user
# Check if user exists by email (migration case)
email = claims.get("email")
if email:
user = await User.filter(email=email, auth_provider="local").first()
if user:
# Migrate existing local user to OIDC
user.oidc_subject = oidc_subject
user.auth_provider = "oidc"
user.password = None # Clear password
user.ldap_groups = claims.get("groups", [])
await user.save()
return user
# Create new user from OIDC claims
username = (
claims.get("preferred_username")
or claims.get("name")
or claims.get("email", "").split("@")[0]
or f"user_{oidc_subject[:8]}"
)
# Extract LDAP groups from claims
groups = claims.get("groups", [])
user = await User.create(
id=uuid4(),
username=username,
email=email or f"{oidc_subject}@oidc.local", # Fallback if no email claim
oidc_subject=oidc_subject,
auth_provider="oidc",
password=None,
ldap_groups=groups,
)
return user
@staticmethod
async def find_user_by_oidc_subject(oidc_subject: str) -> Optional[User]:
"""Find user by OIDC subject ID"""
return await User.filter(oidc_subject=oidc_subject).first()