linter
This commit is contained in:
36
services/raggr/blueprints/conversation/agents.py
Normal file
36
services/raggr/blueprints/conversation/agents.py
Normal file
@@ -0,0 +1,36 @@
|
||||
from langchain.agents import create_agent
|
||||
from langchain.tools import tool
|
||||
from langchain_openai import ChatOpenAI
|
||||
|
||||
from blueprints.rag.logic import query_vector_store
|
||||
|
||||
openai_gpt_5_mini = ChatOpenAI(model="gpt-5-mini")
|
||||
|
||||
|
||||
@tool(response_format="content_and_artifact")
|
||||
async def simba_search(query: str):
|
||||
"""Search through Simba's medical records, veterinary documents, and personal information.
|
||||
|
||||
Use this tool whenever the user asks questions about:
|
||||
- Simba's health history, medical records, or veterinary visits
|
||||
- Medications, treatments, or diagnoses
|
||||
- Weight, diet, or physical characteristics over time
|
||||
- Veterinary recommendations or advice
|
||||
- Ryan's (the owner's) information related to Simba
|
||||
- Any factual information that would be found in documents
|
||||
|
||||
Args:
|
||||
query: The user's question or information need about Simba
|
||||
|
||||
Returns:
|
||||
Relevant information from Simba's documents
|
||||
"""
|
||||
print(f"[SIMBA SEARCH] Tool called with query: {query}")
|
||||
serialized, docs = await query_vector_store(query=query)
|
||||
print(f"[SIMBA SEARCH] Found {len(docs)} documents")
|
||||
print(f"[SIMBA SEARCH] Serialized result length: {len(serialized)}")
|
||||
print(f"[SIMBA SEARCH] First 200 chars: {serialized[:200]}")
|
||||
return serialized, docs
|
||||
|
||||
|
||||
main_agent = create_agent(model=openai_gpt_5_mini, tools=[simba_search])
|
||||
Reference in New Issue
Block a user