This commit is contained in:
2026-01-11 09:12:37 -05:00
parent 1a026f76a1
commit 12eb110313
25 changed files with 1345 additions and 83 deletions

View File

@@ -1,6 +1,6 @@
import datetime
from quart import Blueprint, jsonify
from quart import Blueprint, jsonify, request
from quart_jwt_extended import (
get_jwt_identity,
jwt_refresh_token_required,
@@ -8,7 +8,13 @@ from quart_jwt_extended import (
import blueprints.users.models
from .logic import rename_conversation
from .agents import main_agent
from .logic import (
add_message_to_conversation,
get_conversation_by_id,
get_conversation_transcript,
rename_conversation,
)
from .models import (
Conversation,
PydConversation,
@@ -20,6 +26,51 @@ conversation_blueprint = Blueprint(
)
@conversation_blueprint.post("/query")
@jwt_refresh_token_required
async def query():
current_user_uuid = get_jwt_identity()
user = await blueprints.users.models.User.get(id=current_user_uuid)
data = await request.get_json()
query = data.get("query")
conversation_id = data.get("conversation_id")
conversation = await get_conversation_by_id(conversation_id)
await conversation.fetch_related("messages")
await add_message_to_conversation(
conversation=conversation,
message=query,
speaker="user",
user=user,
)
transcript = await get_conversation_transcript(user=user, conversation=conversation)
transcript_prompt = f"Here is the message transcript thus far {transcript}."
prompt = f"""Answer the user in as if you were a cat named Simba. Don't act too catlike. Be assertive.
{transcript_prompt if len(transcript) > 0 else ""}
Respond to this prompt: {query}"""
payload = {
"messages": [
{
"role": "system",
"content": "You are a helpful cat assistant named Simba that understands veterinary terms. When there are questions to you specifically, they are referring to Simba the cat. Answer the user in as if you were a cat named Simba. Don't act too catlike. Be assertive.\n\nIMPORTANT: When users ask factual questions about Simba's health, medical history, veterinary visits, medications, weight, or any information that would be in documents, you MUST use the simba_search tool to retrieve accurate information before answering. Do not rely on general knowledge - always search the documents for factual questions.",
},
{"role": "user", "content": prompt},
]
}
response = await main_agent.ainvoke(payload)
message = response.get("messages", [])[-1].content
await add_message_to_conversation(
conversation=conversation,
message=message,
speaker="simba",
user=user,
)
return jsonify({"response": message})
@conversation_blueprint.route("/<conversation_id>")
@jwt_refresh_token_required
async def get_conversation(conversation_id: str):

View File

@@ -0,0 +1,36 @@
from langchain.agents import create_agent
from langchain.tools import tool
from langchain_openai import ChatOpenAI
from blueprints.rag.logic import query_vector_store
openai_gpt_5_mini = ChatOpenAI(model="gpt-5-mini")
@tool(response_format="content_and_artifact")
async def simba_search(query: str):
"""Search through Simba's medical records, veterinary documents, and personal information.
Use this tool whenever the user asks questions about:
- Simba's health history, medical records, or veterinary visits
- Medications, treatments, or diagnoses
- Weight, diet, or physical characteristics over time
- Veterinary recommendations or advice
- Ryan's (the owner's) information related to Simba
- Any factual information that would be found in documents
Args:
query: The user's question or information need about Simba
Returns:
Relevant information from Simba's documents
"""
print(f"[SIMBA SEARCH] Tool called with query: {query}")
serialized, docs = await query_vector_store(query=query)
print(f"[SIMBA SEARCH] Found {len(docs)} documents")
print(f"[SIMBA SEARCH] Serialized result length: {len(serialized)}")
print(f"[SIMBA SEARCH] First 200 chars: {serialized[:200]}")
return serialized, docs
main_agent = create_agent(model=openai_gpt_5_mini, tools=[simba_search])

View File

@@ -74,7 +74,7 @@ async def rename_conversation(
prompt = f"Summarize the following conversation into a sassy one-liner title:\n\n{messages}"
response = structured_llm.invoke(prompt)
new_name: str = response.get("title")
new_name: str = response.get("title", "")
conversation.name = new_name
await conversation.save()
return new_name